MatrixCwiseBinaryOps.h 6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

// This file is a base class plugin containing matrix specifics coefficient wise functions.

/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
  *
  * Example: \include MatrixBase_cwiseProduct.cpp
  * Output: \verbinclude MatrixBase_cwiseProduct.out
  *
  * \sa class CwiseBinaryOp, cwiseAbs2
  */
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
}

/** \returns an expression of the coefficient-wise == operator of *this and \a other
  *
  * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
  * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
  * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
  * isMuchSmallerThan().
  *
  * Example: \include MatrixBase_cwiseEqual.cpp
  * Output: \verbinclude MatrixBase_cwiseEqual.out
  *
  * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan()
  */
template<typename OtherDerived>
inline const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
}

/** \returns an expression of the coefficient-wise != operator of *this and \a other
  *
  * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
  * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
  * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
  * isMuchSmallerThan().
  *
  * Example: \include MatrixBase_cwiseNotEqual.cpp
  * Output: \verbinclude MatrixBase_cwiseNotEqual.out
  *
  * \sa cwiseEqual(), isApprox(), isMuchSmallerThan()
  */
template<typename OtherDerived>
inline const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
}

/** \returns an expression of the coefficient-wise min of *this and \a other
  *
  * Example: \include MatrixBase_cwiseMin.cpp
  * Output: \verbinclude MatrixBase_cwiseMin.out
  *
  * \sa class CwiseBinaryOp, max()
  */
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
}

Don Gagne's avatar
Don Gagne committed
79 80 81 82 83 84 85
/** \returns an expression of the coefficient-wise min of *this and scalar \a other
  *
  * \sa class CwiseBinaryOp, min()
  */
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType>
cwiseMin(const Scalar &other) const
{
86
  return cwiseMin(Derived::Constant(rows(), cols(), other));
Don Gagne's avatar
Don Gagne committed
87 88
}

LM's avatar
LM committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102
/** \returns an expression of the coefficient-wise max of *this and \a other
  *
  * Example: \include MatrixBase_cwiseMax.cpp
  * Output: \verbinclude MatrixBase_cwiseMax.out
  *
  * \sa class CwiseBinaryOp, min()
  */
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
}

Don Gagne's avatar
Don Gagne committed
103 104 105 106 107 108 109
/** \returns an expression of the coefficient-wise max of *this and scalar \a other
  *
  * \sa class CwiseBinaryOp, min()
  */
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType>
cwiseMax(const Scalar &other) const
{
110
  return cwiseMax(Derived::Constant(rows(), cols(), other));
Don Gagne's avatar
Don Gagne committed
111 112 113
}


LM's avatar
LM committed
114 115 116 117 118 119 120 121 122 123 124 125 126
/** \returns an expression of the coefficient-wise quotient of *this and \a other
  *
  * Example: \include MatrixBase_cwiseQuotient.cpp
  * Output: \verbinclude MatrixBase_cwiseQuotient.out
  *
  * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
  */
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
  return CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
}
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,internal::cmp_EQ>, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType;

/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
  *
  * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
  * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
  * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
  * isMuchSmallerThan().
  *
  * \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
  */
inline const CwiseScalarEqualReturnType
cwiseEqual(const Scalar& s) const
{
  return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op<Scalar,internal::cmp_EQ>());
}