SparseMatrix.h 44.1 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

namespace Eigen { 

/** \ingroup SparseCore_Module
  *
  * \class SparseMatrix
  *
  * \brief A versatible sparse matrix representation
  *
  * This class implements a more versatile variants of the common \em compressed row/column storage format.
  * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
  * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
  * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
  * can be done with limited memory reallocation and copies.
  *
  * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
  * compatible with many library.
  *
  * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is ColMajor or RowMajor. The default is 0 which means column-major.
  * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseMatrix<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
{
  typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;

  typedef _Scalar Scalar;
  typedef Dense StorageKind;
  typedef _Index Index;
  typedef MatrixXpr XprKind;

  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = 1,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = 1,
    Flags = 0,
    CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
  };
};

} // end namespace internal

template<typename _Scalar, int _Options, typename _Index>
class SparseMatrix
  : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)

    typedef MappedSparseMatrix<Scalar,Flags> Map;
    using Base::IsRowMajor;
    typedef internal::CompressedStorage<Scalar,Index> Storage;
    enum {
      Options = _Options
    };

  protected:

    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
    Index* m_outerIndex;
    Index* m_innerNonZeros;     // optional, if null then the data is compressed
    Storage m_data;
    
    Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
    const  Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }

  public:
    
    /** \returns whether \c *this is in compressed form. */
    inline bool isCompressed() const { return m_innerNonZeros==0; }

    /** \returns the number of rows of the matrix */
    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    /** \returns the number of columns of the matrix */
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
    inline Index innerSize() const { return m_innerSize; }
    /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
    inline Index outerSize() const { return m_outerSize; }
    
    /** \returns a const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline const Scalar* valuePtr() const { return &m_data.value(0); }
    /** \returns a non-const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline Scalar* valuePtr() { return &m_data.value(0); }

    /** \returns a const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline const Index* innerIndexPtr() const { return &m_data.index(0); }
    /** \returns a non-const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline Index* innerIndexPtr() { return &m_data.index(0); }

    /** \returns a const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline const Index* outerIndexPtr() const { return m_outerIndex; }
    /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline Index* outerIndexPtr() { return m_outerIndex; }

    /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
    /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline Index* innerNonZeroPtr() { return m_innerNonZeros; }

    /** \internal */
    inline Storage& data() { return m_data; }
    /** \internal */
    inline const Storage& data() const { return m_data; }

    /** \returns the value of the matrix at position \a i, \a j
      * This function returns Scalar(0) if the element is an explicit \em zero */
    inline Scalar coeff(Index row, Index col) const
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      return m_data.atInRange(m_outerIndex[outer], end, inner);
    }

    /** \returns a non-const reference to the value of the matrix at position \a i, \a j
      *
      * If the element does not exist then it is inserted via the insert(Index,Index) function
      * which itself turns the matrix into a non compressed form if that was not the case.
      *
      * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
      * function if the element does not already exist.
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      if(end<=start)
        return insert(row,col);
      const Index p = m_data.searchLowerIndex(start,end-1,inner);
      if((p<end) && (m_data.index(p)==inner))
        return m_data.value(p);
      else
        return insert(row,col);
    }

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
      * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
      * call reserve(const SizesType &) to reserve a more appropriate number of elements per
      * inner vector that better match your scenario.
      *
      * This function performs a sorted insertion in O(1) if the elements of each inner vector are
      * inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
      *
      */
    Scalar& insert(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      if(isCompressed())
      {
226
        reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2));
Don Gagne's avatar
Don Gagne committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      }
      return insertUncompressed(row,col);
    }

  public:

    class InnerIterator;
    class ReverseInnerIterator;

    /** Removes all non zeros but keep allocated memory */
    inline void setZero()
    {
      m_data.clear();
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
      if(m_innerNonZeros)
        memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
    }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const
    {
      if(m_innerNonZeros)
        return innerNonZeros().sum();
      return static_cast<Index>(m_data.size());
    }

    /** Preallocates \a reserveSize non zeros.
      *
      * Precondition: the matrix must be in compressed mode. */
    inline void reserve(Index reserveSize)
    {
      eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
      m_data.reserve(reserveSize);
    }
    
    #ifdef EIGEN_PARSED_BY_DOXYGEN
    /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
      *
      * This function turns the matrix in non-compressed mode */
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes);
    #else
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif =
    #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename
        typename
    #endif
        SizesType::Scalar())
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    #endif // EIGEN_PARSED_BY_DOXYGEN
  protected:
    template<class SizesType>
    inline void reserveInnerVectors(const SizesType& reserveSizes)
    {
      if(isCompressed())
      {
        std::size_t totalReserveSize = 0;
        // turn the matrix into non-compressed mode
        m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        
        // temporarily use m_innerSizes to hold the new starting points.
        Index* newOuterIndex = m_innerNonZeros;
        
        Index count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
          totalReserveSize += reserveSizes[j];
        }
        m_data.reserve(totalReserveSize);
        Index previousOuterIndex = m_outerIndex[m_outerSize];
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index innerNNZ = previousOuterIndex - m_outerIndex[j];
          for(Index i=innerNNZ-1; i>=0; --i)
          {
            m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
            m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
          }
          previousOuterIndex = m_outerIndex[j];
          m_outerIndex[j] = newOuterIndex[j];
          m_innerNonZeros[j] = innerNNZ;
        }
        m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
        
        m_data.resize(m_outerIndex[m_outerSize]);
      }
      else
      {
        Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index)));
        if (!newOuterIndex) internal::throw_std_bad_alloc();
        
        Index count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
          Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved);
          count += toReserve + m_innerNonZeros[j];
        }
        newOuterIndex[m_outerSize] = count;
        
        m_data.resize(count);
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index offset = newOuterIndex[j] - m_outerIndex[j];
          if(offset>0)
          {
            Index innerNNZ = m_innerNonZeros[j];
            for(Index i=innerNNZ-1; i>=0; --i)
            {
              m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
              m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
            }
          }
        }
        
        std::swap(m_outerIndex, newOuterIndex);
        std::free(newOuterIndex);
      }
      
    }
  public:

    //--- low level purely coherent filling ---

    /** \internal
      * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \internal
      * \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \internal
      * \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(0, inner);
      return m_data.value(p);
    }

    /** \internal
      * \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
405
      eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
Don Gagne's avatar
Don Gagne committed
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    /** \internal
      * Must be called after inserting a set of non zero entries using the low level compressed API.
      */
    inline void finalize()
    {
      if(isCompressed())
      {
        Index size = static_cast<Index>(m_data.size());
        Index i = m_outerSize;
        // find the last filled column
        while (i>=0 && m_outerIndex[i]==0)
          --i;
        ++i;
        while (i<=m_outerSize)
        {
          m_outerIndex[i] = size;
          ++i;
        }
      }
    }

    //---

    template<typename InputIterators>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end);

    void sumupDuplicates();

    //---
    
    /** \internal
      * same as insert(Index,Index) except that the indices are given relative to the storage order */
    Scalar& insertByOuterInner(Index j, Index i)
    {
      return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
    }

    /** Turns the matrix into the \em compressed format.
      */
    void makeCompressed()
    {
      if(isCompressed())
        return;
      
      Index oldStart = m_outerIndex[1];
      m_outerIndex[1] = m_innerNonZeros[0];
      for(Index j=1; j<m_outerSize; ++j)
      {
        Index nextOldStart = m_outerIndex[j+1];
        Index offset = oldStart - m_outerIndex[j];
        if(offset>0)
        {
          for(Index k=0; k<m_innerNonZeros[j]; ++k)
          {
            m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
            m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
          }
        }
        m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
        oldStart = nextOldStart;
      }
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
      m_data.resize(m_outerIndex[m_outerSize]);
      m_data.squeeze();
    }

    /** Turns the matrix into the uncompressed mode */
    void uncompress()
    {
      if(m_innerNonZeros != 0)
        return; 
      m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
483
      for (Index i = 0; i < m_outerSize; i++)
Don Gagne's avatar
Don Gagne committed
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
      {
        m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 
      }
    }
    
    /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
    void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
      // TODO also implement a unit test
      makeCompressed();

      Index k = 0;
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void conservativeResize(Index rows, Index cols) 
    {
      // No change
      if (this->rows() == rows && this->cols() == cols) return;
      
      // If one dimension is null, then there is nothing to be preserved
      if(rows==0 || cols==0) return resize(rows,cols);

      Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
      Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
      Index newInnerSize = IsRowMajor ? cols : rows;

      // Deals with inner non zeros
      if (m_innerNonZeros)
      {
        // Resize m_innerNonZeros
        Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index)));
        if (!newInnerNonZeros) internal::throw_std_bad_alloc();
        m_innerNonZeros = newInnerNonZeros;
        
        for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)          
          m_innerNonZeros[i] = 0;
      } 
      else if (innerChange < 0) 
      {
        // Inner size decreased: allocate a new m_innerNonZeros
        m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        for(Index i = 0; i < m_outerSize; i++)
          m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
      }
      
      // Change the m_innerNonZeros in case of a decrease of inner size
      if (m_innerNonZeros && innerChange < 0)
      {
        for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
        {
          Index &n = m_innerNonZeros[i];
          Index start = m_outerIndex[i];
          while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; 
        }
      }
      
      m_innerSize = newInnerSize;

      // Re-allocate outer index structure if necessary
      if (outerChange == 0)
        return;
          
      Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index)));
      if (!newOuterIndex) internal::throw_std_bad_alloc();
      m_outerIndex = newOuterIndex;
      if (outerChange > 0)
      {
        Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
        for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)          
          m_outerIndex[i] = last; 
      }
      m_outerSize += outerChange;
    }
    
    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        std::free(m_outerIndex);
        m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index)));
        if (!m_outerIndex) internal::throw_std_bad_alloc();
        
        m_outerSize = outerSize;
      }
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** \internal
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      // TODO remove this function
      m_data.resize(size);
    }

    /** \returns a const expression of the diagonal coefficients */
    const Diagonal<const SparseMatrix> diagonal() const { return *this; }

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      check_template_parameters();
      *this = other.derived();
    }
    
    /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
    template<typename OtherDerived, unsigned int UpLo>
    inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other;
    }

    /** Copy constructor (it performs a deep copy) */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }

    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    SparseMatrix(const ReturnByValue<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      initAssignment(other);
      other.evalTo(*this);
    }

    /** Swaps the content of two sparse matrices of the same type.
      * This is a fast operation that simply swaps the underlying pointers and parameters. */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      std::swap(m_innerNonZeros, other.m_innerNonZeros);
      m_data.swap(other.m_data);
    }

694 695
    /** Sets *this to the identity matrix.
      * This function also turns the matrix into compressed mode, and drop any reserved memory. */
Don Gagne's avatar
Don Gagne committed
696 697 698 699 700 701 702
    inline void setIdentity()
    {
      eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
      this->m_data.resize(rows());
      Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1);
      Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes();
      Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
703 704
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
Don Gagne's avatar
Don Gagne committed
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    }
    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else if(this!=&other)
      {
        initAssignment(other);
        if(other.isCompressed())
        {
          memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
          m_data = other.m_data;
        }
        else
        {
          Base::operator=(other);
        }
      }
      return *this;
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename Lhs, typename Rhs>
    inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
    { return Base::operator=(product); }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
    {
      initAssignment(other);
      return Base::operator=(other.derived());
    }
    
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other.derived()); }
    #endif

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        if(m.isCompressed())
          for (Index i=0; i<m.nonZeros(); ++i)
            s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        else
          for (Index i=0; i<m.outerSize(); ++i)
          {
758 759
            Index p = m.m_outerIndex[i];
            Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
Don Gagne's avatar
Don Gagne committed
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            Index k=p;
            for (; k<pe; ++k)
              s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
            for (; k<m.m_outerIndex[i+1]; ++k)
              s << "(_,_) ";
          }
        s << std::endl;
        s << std::endl;
        s << "Outer pointers:\n";
        for (Index i=0; i<m.outerSize(); ++i)
          s << m.m_outerIndex[i] << " ";
        s << " $" << std::endl;
        if(!m.isCompressed())
        {
          s << "Inner non zeros:\n";
          for (Index i=0; i<m.outerSize(); ++i)
            s << m.m_innerNonZeros[i] << " ";
          s << " $" << std::endl;
        }
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      std::free(m_outerIndex);
      std::free(m_innerNonZeros);
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Overloaded for performance */
    Scalar sum() const;
#endif
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

protected:

    template<typename Other>
    void initAssignment(const Other& other)
    {
      resize(other.rows(), other.cols());
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
    }

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);

    /** \internal
      * A vector object that is equal to 0 everywhere but v at the position i */
    class SingletonVector
    {
        Index m_index;
        Index m_value;
      public:
        typedef Index value_type;
        SingletonVector(Index i, Index v)
          : m_index(i), m_value(v)
        {}

        Index operator[](Index i) const { return i==m_index ? m_value : 0; }
    };

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);

public:
    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      eigen_assert(!isCompressed());
      eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));

      Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
      m_data.index(p) = inner;
      return (m_data.value(p) = 0);
    }

private:
  static void check_template_parameters()
  {
    EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
    EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
  }

  struct default_prunning_func {
    default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
    {
      if(mat.isCompressed())
        m_end = mat.m_outerIndex[outer+1];
      else
        m_end = m_id + mat.m_innerNonZeros[outer];
    }

    inline InnerIterator& operator++() { m_id++; return *this; }

    inline const Scalar& value() const { return m_values[m_id]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }

    inline Index index() const { return m_indices[m_id]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id < m_end); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    Index m_end;
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
{
  public:
    ReverseInnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
    {
      if(mat.isCompressed())
        m_id = mat.m_outerIndex[outer+1];
      else
        m_id = m_start + mat.m_innerNonZeros[outer];
    }

    inline ReverseInnerIterator& operator--() { --m_id; return *this; }

    inline const Scalar& value() const { return m_values[m_id-1]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }

    inline Index index() const { return m_indices[m_id-1]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id > m_start); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    const Index m_start;
};

namespace internal {

template<typename InputIterator, typename SparseMatrixType>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0)
{
  EIGEN_UNUSED_VARIABLE(Options);
  enum { IsRowMajor = SparseMatrixType::IsRowMajor };
  typedef typename SparseMatrixType::Scalar Scalar;
945 946
  typedef typename SparseMatrixType::Index Index;
  SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
Don Gagne's avatar
Don Gagne committed
947

948
  if(begin!=end)
Don Gagne's avatar
Don Gagne committed
949 950
  {
    // pass 1: count the nnz per inner-vector
951
    Matrix<Index,Dynamic,1> wi(trMat.outerSize());
Don Gagne's avatar
Don Gagne committed
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    wi.setZero();
    for(InputIterator it(begin); it!=end; ++it)
    {
      eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
      wi(IsRowMajor ? it->col() : it->row())++;
    }

    // pass 2: insert all the elements into trMat
    trMat.reserve(wi);
    for(InputIterator it(begin); it!=end; ++it)
      trMat.insertBackUncompressed(it->row(),it->col()) = it->value();

    // pass 3:
    trMat.sumupDuplicates();
  }

  // pass 4: transposed copy -> implicit sorting
  mat = trMat;
}

}


/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
  *
  * A \em triplet is a tuple (i,j,value) defining a non-zero element.
  * The input list of triplets does not have to be sorted, and can contains duplicated elements.
  * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
  * This is a \em O(n) operation, with \em n the number of triplet elements.
  * The initial contents of \c *this is destroyed.
  * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
  * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
  *
  * The \a InputIterators value_type must provide the following interface:
  * \code
  * Scalar value() const; // the value
  * Scalar row() const;   // the row index i
  * Scalar col() const;   // the column index j
  * \endcode
  * See for instance the Eigen::Triplet template class.
  *
  * Here is a typical usage example:
  * \code
    typedef Triplet<double> T;
    std::vector<T> tripletList;
    triplets.reserve(estimation_of_entries);
    for(...)
    {
      // ...
      tripletList.push_back(T(i,j,v_ij));
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(tripletList.begin(), tripletList.end());
    // m is ready to go!
  * \endcode
  *
  * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
  * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
  * be explicitely stored into a std::vector for instance.
  */
template<typename Scalar, int _Options, typename _Index>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
  internal::set_from_triplets(begin, end, *this);
}

/** \internal */
template<typename Scalar, int _Options, typename _Index>
void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
{
  eigen_assert(!isCompressed());
  // TODO, in practice we should be able to use m_innerNonZeros for that task
1025
  Matrix<Index,Dynamic,1> wi(innerSize());
Don Gagne's avatar
Don Gagne committed
1026 1027 1028
  wi.fill(-1);
  Index count = 0;
  // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
1029
  for(Index j=0; j<outerSize(); ++j)
Don Gagne's avatar
Don Gagne committed
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  {
    Index start   = count;
    Index oldEnd  = m_outerIndex[j]+m_innerNonZeros[j];
    for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
    {
      Index i = m_data.index(k);
      if(wi(i)>=start)
      {
        // we already meet this entry => accumulate it
        m_data.value(wi(i)) += m_data.value(k);
      }
      else
      {
        m_data.value(count) = m_data.value(k);
        m_data.index(count) = m_data.index(k);
        wi(i) = count;
        ++count;
      }
    }
    m_outerIndex[j] = start;
  }
  m_outerIndex[m_outerSize] = count;

  // turn the matrix into compressed form
  std::free(m_innerNonZeros);
  m_innerNonZeros = 0;
  m_data.resize(m_outerIndex[m_outerSize]);
}

template<typename Scalar, int _Options, typename _Index>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
  
  const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
  if (needToTranspose)
  {
    // two passes algorithm:
    //  1 - compute the number of coeffs per dest inner vector
    //  2 - do the actual copy/eval
    // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
    typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
    typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
    OtherCopy otherCopy(other.derived());

    SparseMatrix dest(other.rows(),other.cols());
    Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();

    // pass 1
    // FIXME the above copy could be merged with that pass
    for (Index j=0; j<otherCopy.outerSize(); ++j)
      for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
        ++dest.m_outerIndex[it.index()];

    // prefix sum
    Index count = 0;
1088
    Matrix<Index,Dynamic,1> positions(dest.outerSize());
Don Gagne's avatar
Don Gagne committed
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    for (Index j=0; j<dest.outerSize(); ++j)
    {
      Index tmp = dest.m_outerIndex[j];
      dest.m_outerIndex[j] = count;
      positions[j] = count;
      count += tmp;
    }
    dest.m_outerIndex[dest.outerSize()] = count;
    // alloc
    dest.m_data.resize(count);
    // pass 2
    for (Index j=0; j<otherCopy.outerSize(); ++j)
    {
      for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
      {
        Index pos = positions[it.index()]++;
        dest.m_data.index(pos) = j;
        dest.m_data.value(pos) = it.value();
      }
    }
    this->swap(dest);
    return *this;
  }
  else
  {
    if(other.isRValue())
      initAssignment(other.derived());
    // there is no special optimization
    return Base::operator=(other.derived());
  }
}

template<typename _Scalar, int _Options, typename _Index>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
{
  eigen_assert(!isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
  Index innerNNZ = m_innerNonZeros[outer];
  if(innerNNZ>=room)
  {
    // this inner vector is full, we need to reallocate the whole buffer :(
    reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ)));
  }

  Index startId = m_outerIndex[outer];
  Index p = startId + m_innerNonZeros[outer];
  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }
  eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exist, you must call coeffRef to this end");

  m_innerNonZeros[outer]++;

  m_data.index(p) = inner;
  return (m_data.value(p) = 0);
}

template<typename _Scalar, int _Options, typename _Index>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col)
{
  eigen_assert(isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index previousOuter = outer;
  if (m_outerIndex[outer+1]==0)
  {
    // we start a new inner vector
    while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
    {
      m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
      --previousOuter;
    }
    m_outerIndex[outer+1] = m_outerIndex[outer];
  }

  // here we have to handle the tricky case where the outerIndex array
  // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
  // the 2nd inner vector...
  bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
                && (size_t(m_outerIndex[outer+1]) == m_data.size());

  size_t startId = m_outerIndex[outer];
  // FIXME let's make sure sizeof(long int) == sizeof(size_t)
  size_t p = m_outerIndex[outer+1];
  ++m_outerIndex[outer+1];

1184
  double reallocRatio = 1;
Don Gagne's avatar
Don Gagne committed
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  if (m_data.allocatedSize()<=m_data.size())
  {
    // if there is no preallocated memory, let's reserve a minimum of 32 elements
    if (m_data.size()==0)
    {
      m_data.reserve(32);
    }
    else
    {
      // we need to reallocate the data, to reduce multiple reallocations
      // we use a smart resize algorithm based on the current filling ratio
1196 1197 1198
      // in addition, we use double to avoid integers overflows
      double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
      reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
Don Gagne's avatar
Don Gagne committed
1199 1200 1201
      // furthermore we bound the realloc ratio to:
      //   1) reduce multiple minor realloc when the matrix is almost filled
      //   2) avoid to allocate too much memory when the matrix is almost empty
1202
      reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
Don Gagne's avatar
Don Gagne committed
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    }
  }
  m_data.resize(m_data.size()+1,reallocRatio);

  if (!isLastVec)
  {
    if (previousOuter==-1)
    {
      // oops wrong guess.
      // let's correct the outer offsets
      for (Index k=0; k<=(outer+1); ++k)
        m_outerIndex[k] = 0;
      Index k=outer+1;
      while(m_outerIndex[k]==0)
        m_outerIndex[k++] = 1;
      while (k<=m_outerSize && m_outerIndex[k]!=0)
        m_outerIndex[k++]++;
      p = 0;
      --k;
      k = m_outerIndex[k]-1;
      while (k>0)
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
    else
    {
      // we are not inserting into the last inner vec
      // update outer indices:
      Index j = outer+2;
      while (j<=m_outerSize && m_outerIndex[j]!=0)
        m_outerIndex[j++]++;
      --j;
      // shift data of last vecs:
      Index k = m_outerIndex[j]-1;
      while (k>=Index(p))
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
  }

  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }

  m_data.index(p) = inner;
  return (m_data.value(p) = 0);
}

} // end namespace Eigen

#endif // EIGEN_SPARSEMATRIX_H