HouseholderQR.h 13.1 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Vincent Lejeune
//
Don Gagne's avatar
Don Gagne committed
8 9 10
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
11 12 13 14

#ifndef EIGEN_QR_H
#define EIGEN_QR_H

Don Gagne's avatar
Don Gagne committed
15 16
namespace Eigen { 

LM's avatar
LM committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/** \ingroup QR_Module
  *
  *
  * \class HouseholderQR
  *
  * \brief Householder QR decomposition of a matrix
  *
  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
  *
  * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
  * such that 
  * \f[
  *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
  * \f]
  * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
  * The result is stored in a compact way compatible with LAPACK.
  *
  * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
  * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
  *
  * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
  * FullPivHouseholderQR or ColPivHouseholderQR.
  *
  * \sa MatrixBase::householderQr()
  */
template<typename _MatrixType> class HouseholderQR
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
Don Gagne's avatar
Don Gagne committed
60
    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
LM's avatar
LM committed
61 62

    /**
Don Gagne's avatar
Don Gagne committed
63 64 65 66 67
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via HouseholderQR::compute(const MatrixType&).
      */
LM's avatar
LM committed
68 69 70 71 72 73 74 75 76 77
    HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa HouseholderQR()
      */
    HouseholderQR(Index rows, Index cols)
      : m_qr(rows, cols),
Don Gagne's avatar
Don Gagne committed
78
        m_hCoeffs((std::min)(rows,cols)),
LM's avatar
LM committed
79 80 81
        m_temp(cols),
        m_isInitialized(false) {}

Don Gagne's avatar
Don Gagne committed
82 83 84 85 86 87 88 89 90 91 92 93
    /** \brief Constructs a QR factorization from a given matrix
      *
      * This constructor computes the QR factorization of the matrix \a matrix by calling
      * the method compute(). It is a short cut for:
      * 
      * \code
      * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
      * qr.compute(matrix);
      * \endcode
      * 
      * \sa compute()
      */
LM's avatar
LM committed
94 95
    HouseholderQR(const MatrixType& matrix)
      : m_qr(matrix.rows(), matrix.cols()),
Don Gagne's avatar
Don Gagne committed
96
        m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
LM's avatar
LM committed
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        m_temp(matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the QR decomposition, if any exists.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \returns a solution.
      *
      * \note The case where b is a matrix is not yet implemented. Also, this
      *       code is space inefficient.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      *
      * Example: \include HouseholderQR_solve.cpp
      * Output: \verbinclude HouseholderQR_solve.out
      */
    template<typename Rhs>
    inline const internal::solve_retval<HouseholderQR, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
      return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
    }

Don Gagne's avatar
Don Gagne committed
128 129 130 131 132 133 134 135
    /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
      *
      * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
      * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
      *
      * Example: \include HouseholderQR_householderQ.cpp
      * Output: \verbinclude HouseholderQR_householderQ.out
      */
LM's avatar
LM committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    HouseholderSequenceType householderQ() const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
      return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    }

    /** \returns a reference to the matrix where the Householder QR decomposition is stored
      * in a LAPACK-compatible way.
      */
    const MatrixType& matrixQR() const
    {
        eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
        return m_qr;
    }

    HouseholderQR& compute(const MatrixType& matrix);

    /** \returns the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      * One way to work around that is to use logAbsDeterminant() instead.
      *
      * \sa logAbsDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar absDeterminant() const;

    /** \returns the natural log of the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note This method is useful to work around the risk of overflow/underflow that's inherent
      * to determinant computation.
      *
      * \sa absDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar logAbsDeterminant() const;

    inline Index rows() const { return m_qr.rows(); }
    inline Index cols() const { return m_qr.cols(); }
Don Gagne's avatar
Don Gagne committed
184 185 186 187 188
    
    /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
      * 
      * For advanced uses only.
      */
LM's avatar
LM committed
189 190 191
    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }

  protected:
192 193 194 195 196 197
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
    
LM's avatar
LM committed
198 199 200 201 202 203 204 205 206
    MatrixType m_qr;
    HCoeffsType m_hCoeffs;
    RowVectorType m_temp;
    bool m_isInitialized;
};

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
{
Don Gagne's avatar
Don Gagne committed
207
  using std::abs;
LM's avatar
LM committed
208 209
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
Don Gagne's avatar
Don Gagne committed
210
  return abs(m_qr.diagonal().prod());
LM's avatar
LM committed
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
}

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
{
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return m_qr.diagonal().cwiseAbs().array().log().sum();
}

namespace internal {

/** \internal */
template<typename MatrixQR, typename HCoeffs>
void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
{
  typedef typename MatrixQR::Index Index;
  typedef typename MatrixQR::Scalar Scalar;
  typedef typename MatrixQR::RealScalar RealScalar;
  Index rows = mat.rows();
  Index cols = mat.cols();
Don Gagne's avatar
Don Gagne committed
232
  Index size = (std::min)(rows,cols);
LM's avatar
LM committed
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

  eigen_assert(hCoeffs.size() == size);

  typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
  TempType tempVector;
  if(tempData==0)
  {
    tempVector.resize(cols);
    tempData = tempVector.data();
  }

  for(Index k = 0; k < size; ++k)
  {
    Index remainingRows = rows - k;
    Index remainingCols = cols - k - 1;

    RealScalar beta;
    mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
    mat.coeffRef(k,k) = beta;

    // apply H to remaining part of m_qr from the left
    mat.bottomRightCorner(remainingRows, remainingCols)
        .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
  }
}

/** \internal */
260 261 262 263
template<typename MatrixQR, typename HCoeffs,
  typename MatrixQRScalar = typename MatrixQR::Scalar,
  bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
struct householder_qr_inplace_blocked
LM's avatar
LM committed
264
{
265 266 267 268
  // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
  static void run(MatrixQR& mat, HCoeffs& hCoeffs,
      typename MatrixQR::Index maxBlockSize=32,
      typename MatrixQR::Scalar* tempData = 0)
LM's avatar
LM committed
269
  {
270 271 272
    typedef typename MatrixQR::Index Index;
    typedef typename MatrixQR::Scalar Scalar;
    typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
LM's avatar
LM committed
273

274 275 276
    Index rows = mat.rows();
    Index cols = mat.cols();
    Index size = (std::min)(rows, cols);
LM's avatar
LM committed
277

278 279 280 281 282 283 284
    typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
    TempType tempVector;
    if(tempData==0)
    {
      tempVector.resize(cols);
      tempData = tempVector.data();
    }
LM's avatar
LM committed
285

286
    Index blockSize = (std::min)(maxBlockSize,size);
LM's avatar
LM committed
287

288 289
    Index k = 0;
    for (k = 0; k < size; k += blockSize)
LM's avatar
LM committed
290
    {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
      Index bs = (std::min)(size-k,blockSize);  // actual size of the block
      Index tcols = cols - k - bs;            // trailing columns
      Index brows = rows-k;                   // rows of the block

      // partition the matrix:
      //        A00 | A01 | A02
      // mat  = A10 | A11 | A12
      //        A20 | A21 | A22
      // and performs the qr dec of [A11^T A12^T]^T
      // and update [A21^T A22^T]^T using level 3 operations.
      // Finally, the algorithm continue on A22

      BlockType A11_21 = mat.block(k,k,brows,bs);
      Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);

      householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);

      if(tcols)
      {
        BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
        apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
      }
LM's avatar
LM committed
313 314
    }
  }
315
};
LM's avatar
LM committed
316 317 318 319 320 321 322 323 324 325

template<typename _MatrixType, typename Rhs>
struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
  : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
{
  EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    const Index rows = dec().rows(), cols = dec().cols();
Don Gagne's avatar
Don Gagne committed
326
    const Index rank = (std::min)(rows, cols);
LM's avatar
LM committed
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    eigen_assert(rhs().rows() == rows);

    typename Rhs::PlainObject c(rhs());

    // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
    c.applyOnTheLeft(householderSequence(
      dec().matrixQR().leftCols(rank),
      dec().hCoeffs().head(rank)).transpose()
    );

    dec().matrixQR()
       .topLeftCorner(rank, rank)
       .template triangularView<Upper>()
       .solveInPlace(c.topRows(rank));

    dst.topRows(rank) = c.topRows(rank);
    dst.bottomRows(cols-rank).setZero();
  }
};

} // end namespace internal

Don Gagne's avatar
Don Gagne committed
349 350 351 352 353 354
/** Performs the QR factorization of the given matrix \a matrix. The result of
  * the factorization is stored into \c *this, and a reference to \c *this
  * is returned.
  *
  * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
  */
LM's avatar
LM committed
355 356 357
template<typename MatrixType>
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
358 359
  check_template_parameters();
  
LM's avatar
LM committed
360 361
  Index rows = matrix.rows();
  Index cols = matrix.cols();
Don Gagne's avatar
Don Gagne committed
362
  Index size = (std::min)(rows,cols);
LM's avatar
LM committed
363 364 365 366 367 368

  m_qr = matrix;
  m_hCoeffs.resize(size);

  m_temp.resize(cols);

369
  internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
LM's avatar
LM committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

  m_isInitialized = true;
  return *this;
}

/** \return the Householder QR decomposition of \c *this.
  *
  * \sa class HouseholderQR
  */
template<typename Derived>
const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::householderQr() const
{
  return HouseholderQR<PlainObject>(eval());
}

Don Gagne's avatar
Don Gagne committed
386
} // end namespace Eigen
LM's avatar
LM committed
387 388

#endif // EIGEN_QR_H