Hyperplane.h 11.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/** \geometry_module \ingroup Geometry_Module
  *
  * \class Hyperplane
  *
  * \brief A hyperplane
  *
  * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
  * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *             Notice that the dimension of the hyperplane is _AmbientDim-1.
  *
  * This class represents an hyperplane as the zero set of the implicit equation
  * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
  * and \f$ d \f$ is the distance (offset) to the origin.
  */
template <typename _Scalar, int _AmbientDim, int _Options>
class Hyperplane
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
  enum {
    AmbientDimAtCompileTime = _AmbientDim,
    Options = _Options
  };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef DenseIndex Index;
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
  typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
                        ? Dynamic
                        : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
  typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
  typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;

  /** Default constructor without initialization */
Don Gagne's avatar
Don Gagne committed
53
  inline Hyperplane() {}
LM's avatar
LM committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  
  template<int OtherOptions>
  Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
   : m_coeffs(other.coeffs())
  {}

  /** Constructs a dynamic-size hyperplane with \a _dim the dimension
    * of the ambient space */
  inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}

  /** Construct a plane from its normal \a n and a point \a e onto the plane.
    * \warning the vector normal is assumed to be normalized.
    */
  inline Hyperplane(const VectorType& n, const VectorType& e)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = -n.dot(e);
  }

  /** Constructs a plane from its normal \a n and distance to the origin \a d
    * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
    * \warning the vector normal is assumed to be normalized.
    */
Don Gagne's avatar
Don Gagne committed
78
  inline Hyperplane(const VectorType& n, const Scalar& d)
LM's avatar
LM committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = d;
  }

  /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
    * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
  {
    Hyperplane result(p0.size());
    result.normal() = (p1 - p0).unitOrthogonal();
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
    * is required to be exactly 3.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
    Hyperplane result(p0.size());
103 104 105 106 107 108 109 110 111 112 113
    VectorType v0(p2 - p0), v1(p1 - p0);
    result.normal() = v0.cross(v1);
    RealScalar norm = result.normal().norm();
    if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
    {
      Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
      JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
      result.normal() = svd.matrixV().col(2);
    }
    else
      result.normal() /= norm;
LM's avatar
LM committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the parametrized line \a parametrized.
    * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
    * so an arbitrary choice is made.
    */
  // FIXME to be consitent with the rest this could be implemented as a static Through function ??
  explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
  {
    normal() = parametrized.direction().unitOrthogonal();
    offset() = -parametrized.origin().dot(normal());
  }

  ~Hyperplane() {}

  /** \returns the dimension in which the plane holds */
  inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }

  /** normalizes \c *this */
  void normalize(void)
  {
    m_coeffs /= normal().norm();
  }

  /** \returns the signed distance between the plane \c *this and a point \a p.
    * \sa absDistance()
    */
  inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }

  /** \returns the absolute distance between the plane \c *this and a point \a p.
    * \sa signedDistance()
    */
Don Gagne's avatar
Don Gagne committed
148
  inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
LM's avatar
LM committed
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

  /** \returns the projection of a point \a p onto the plane \c *this.
    */
  inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }

  /** \returns a constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
    * \warning the vector normal is assumed to be normalized.
    */
  inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }

  /** \returns a non-constant reference to the distance to the origin, which is also the constant part
    * of the implicit equation */
  inline Scalar& offset() { return m_coeffs(dim()); }

  /** \returns a constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a non-constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline Coefficients& coeffs() { return m_coeffs; }

  /** \returns the intersection of *this with \a other.
    *
    * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
    *
    * \note If \a other is approximately parallel to *this, this method will return any point on *this.
    */
Don Gagne's avatar
Don Gagne committed
189
  VectorType intersection(const Hyperplane& other) const
LM's avatar
LM committed
190
  {
Don Gagne's avatar
Don Gagne committed
191
    using std::abs;
LM's avatar
LM committed
192 193 194 195 196 197
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
    Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
    // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
    // whether the two lines are approximately parallel.
    if(internal::isMuchSmallerThan(det, Scalar(1)))
    {   // special case where the two lines are approximately parallel. Pick any point on the first line.
Don Gagne's avatar
Don Gagne committed
198
        if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
LM's avatar
LM committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
            return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
        else
            return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
    }
    else
    {   // general case
        Scalar invdet = Scalar(1) / det;
        return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
                          invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
    }
  }

  /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
    *
    * \param mat the Dim x Dim transformation matrix
    * \param traits specifies whether the matrix \a mat represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    */
  template<typename XprType>
  inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
  {
    if (traits==Affine)
      normal() = mat.inverse().transpose() * normal();
    else if (traits==Isometry)
      normal() = mat * normal();
    else
    {
Don Gagne's avatar
Don Gagne committed
226
      eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
LM's avatar
LM committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    }
    return *this;
  }

  /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
    *
    * \param t the transformation of dimension Dim
    * \param traits specifies whether the transformation \a t represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    *               Other kind of transformations are not supported.
    */
  template<int TrOptions>
  inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
                                TransformTraits traits = Affine)
  {
    transform(t.linear(), traits);
    offset() -= normal().dot(t.translation());
    return *this;
  }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Hyperplane,
           Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
  {
    return typename internal::cast_return_type<Hyperplane,
                    Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType,int OtherOptions>
  inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  template<int OtherOptions>
Don Gagne's avatar
Don Gagne committed
270
  bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
LM's avatar
LM committed
271 272 273 274 275 276 277
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

protected:

  Coefficients m_coeffs;
};

Don Gagne's avatar
Don Gagne committed
278 279
} // end namespace Eigen

LM's avatar
LM committed
280
#endif // EIGEN_HYPERPLANE_H