MatrixBaseEigenvalues.h 5.55 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
#define EIGEN_MATRIXBASEEIGENVALUES_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
namespace internal {

template<typename Derived, bool IsComplex>
struct eigenvalues_selector
{
  // this is the implementation for the case IsComplex = true
  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
  run(const MatrixBase<Derived>& m)
  {
    typedef typename Derived::PlainObject PlainObject;
    PlainObject m_eval(m);
    return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
  }
};

template<typename Derived>
struct eigenvalues_selector<Derived, false>
{
  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
  run(const MatrixBase<Derived>& m)
  {
    typedef typename Derived::PlainObject PlainObject;
    PlainObject m_eval(m);
    return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
  }
};

} // end namespace internal

/** \brief Computes the eigenvalues of a matrix 
  * \returns Column vector containing the eigenvalues.
  *
  * \eigenvalues_module
  * This function computes the eigenvalues with the help of the EigenSolver
  * class (for real matrices) or the ComplexEigenSolver class (for complex
  * matrices). 
  *
  * The eigenvalues are repeated according to their algebraic multiplicity,
  * so there are as many eigenvalues as rows in the matrix.
  *
  * The SelfAdjointView class provides a better algorithm for selfadjoint
  * matrices.
  *
  * Example: \include MatrixBase_eigenvalues.cpp
  * Output: \verbinclude MatrixBase_eigenvalues.out
  *
  * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
  *     SelfAdjointView::eigenvalues()
  */
template<typename Derived>
inline typename MatrixBase<Derived>::EigenvaluesReturnType
MatrixBase<Derived>::eigenvalues() const
{
  typedef typename internal::traits<Derived>::Scalar Scalar;
  return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
}

/** \brief Computes the eigenvalues of a matrix
  * \returns Column vector containing the eigenvalues.
  *
  * \eigenvalues_module
  * This function computes the eigenvalues with the help of the
  * SelfAdjointEigenSolver class.  The eigenvalues are repeated according to
  * their algebraic multiplicity, so there are as many eigenvalues as rows in
  * the matrix.
  *
  * Example: \include SelfAdjointView_eigenvalues.cpp
  * Output: \verbinclude SelfAdjointView_eigenvalues.out
  *
  * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
  */
template<typename MatrixType, unsigned int UpLo> 
inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
{
  typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
  PlainObject thisAsMatrix(*this);
  return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
}



/** \brief Computes the L2 operator norm
  * \returns Operator norm of the matrix.
  *
  * \eigenvalues_module
  * This function computes the L2 operator norm of a matrix, which is also
  * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
  * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
  * where the maximum is over all vectors and the norm on the right is the
  * Euclidean vector norm. The norm equals the largest singular value, which is
  * the square root of the largest eigenvalue of the positive semi-definite
  * matrix \f$ A^*A \f$.
  *
  * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
  * by SelfAdjointView::eigenvalues(), to compute the operator norm of a
  * matrix.  The SelfAdjointView class provides a better algorithm for
  * selfadjoint matrices.
  *
  * Example: \include MatrixBase_operatorNorm.cpp
  * Output: \verbinclude MatrixBase_operatorNorm.out
  *
  * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
  */
template<typename Derived>
inline typename MatrixBase<Derived>::RealScalar
MatrixBase<Derived>::operatorNorm() const
{
Don Gagne's avatar
Don Gagne committed
124
  using std::sqrt;
LM's avatar
LM committed
125 126 127
  typename Derived::PlainObject m_eval(derived());
  // FIXME if it is really guaranteed that the eigenvalues are already sorted,
  // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
Don Gagne's avatar
Don Gagne committed
128
  return sqrt((m_eval*m_eval.adjoint())
LM's avatar
LM committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                 .eval()
		 .template selfadjointView<Lower>()
		 .eigenvalues()
		 .maxCoeff()
		 );
}

/** \brief Computes the L2 operator norm
  * \returns Operator norm of the matrix.
  *
  * \eigenvalues_module
  * This function computes the L2 operator norm of a self-adjoint matrix. For a
  * self-adjoint matrix, the operator norm is the largest eigenvalue.
  *
  * The current implementation uses the eigenvalues of the matrix, as computed
  * by eigenvalues(), to compute the operator norm of the matrix.
  *
  * Example: \include SelfAdjointView_operatorNorm.cpp
  * Output: \verbinclude SelfAdjointView_operatorNorm.out
  *
  * \sa eigenvalues(), MatrixBase::operatorNorm()
  */
template<typename MatrixType, unsigned int UpLo>
inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
{
  return eigenvalues().cwiseAbs().maxCoeff();
}

Don Gagne's avatar
Don Gagne committed
158 159
} // end namespace Eigen

LM's avatar
LM committed
160
#endif