HessenbergDecomposition.h 13.9 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
#define EIGEN_HESSENBERGDECOMPOSITION_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
namespace internal {
  
template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
template<typename MatrixType>
struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
{
  typedef MatrixType ReturnType;
};

}

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class HessenbergDecomposition
  *
  * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
  *
  * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
  * the real case, the Hessenberg decomposition consists of an orthogonal
  * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H
  * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its
  * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the
  * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition
  * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is,
  * \f$ Q^{-1} = Q^* \f$).
  *
  * Call the function compute() to compute the Hessenberg decomposition of a
  * given matrix. Alternatively, you can use the
  * HessenbergDecomposition(const MatrixType&) constructor which computes the
  * Hessenberg decomposition at construction time. Once the decomposition is
  * computed, you can use the matrixH() and matrixQ() functions to construct
  * the matrices H and Q in the decomposition.
  *
  * The documentation for matrixH() contains an example of the typical use of
  * this class.
  *
  * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
  */
template<typename _MatrixType> class HessenbergDecomposition
{
  public:

    /** \brief Synonym for the template parameter \p _MatrixType. */
    typedef _MatrixType MatrixType;

    enum {
      Size = MatrixType::RowsAtCompileTime,
      SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
      Options = MatrixType::Options,
      MaxSize = MatrixType::MaxRowsAtCompileTime,
      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
    };

    /** \brief Scalar type for matrices of type #MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;

    /** \brief Type for vector of Householder coefficients.
      *
      * This is column vector with entries of type #Scalar. The length of the
      * vector is one less than the size of #MatrixType, if it is a fixed-side
      * type.
      */
    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;

    /** \brief Return type of matrixQ() */
Don Gagne's avatar
Don Gagne committed
85
    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
LM's avatar
LM committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    
    typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;

    /** \brief Default constructor; the decomposition will be computed later.
      *
      * \param [in] size  The size of the matrix whose Hessenberg decomposition will be computed.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute().  The \p size parameter is only
      * used as a hint. It is not an error to give a wrong \p size, but it may
      * impair performance.
      *
      * \sa compute() for an example.
      */
    HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
      : m_matrix(size,size),
        m_temp(size),
        m_isInitialized(false)
    {
      if(size>1)
        m_hCoeffs.resize(size-1);
    }

    /** \brief Constructor; computes Hessenberg decomposition of given matrix.
      *
      * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed.
      *
      * This constructor calls compute() to compute the Hessenberg
      * decomposition.
      *
      * \sa matrixH() for an example.
      */
    HessenbergDecomposition(const MatrixType& matrix)
      : m_matrix(matrix),
        m_temp(matrix.rows()),
        m_isInitialized(false)
    {
      if(matrix.rows()<2)
      {
        m_isInitialized = true;
        return;
      }
      m_hCoeffs.resize(matrix.rows()-1,1);
      _compute(m_matrix, m_hCoeffs, m_temp);
      m_isInitialized = true;
    }

    /** \brief Computes Hessenberg decomposition of given matrix.
      *
      * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed.
      * \returns    Reference to \c *this
      *
      * The Hessenberg decomposition is computed by bringing the columns of the
      * matrix successively in the required form using Householder reflections
      * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix
      * Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$
      * denotes the size of the given matrix.
      *
      * This method reuses of the allocated data in the HessenbergDecomposition
      * object.
      *
      * Example: \include HessenbergDecomposition_compute.cpp
      * Output: \verbinclude HessenbergDecomposition_compute.out
      */
    HessenbergDecomposition& compute(const MatrixType& matrix)
    {
      m_matrix = matrix;
      if(matrix.rows()<2)
      {
        m_isInitialized = true;
        return *this;
      }
      m_hCoeffs.resize(matrix.rows()-1,1);
      _compute(m_matrix, m_hCoeffs, m_temp);
      m_isInitialized = true;
      return *this;
    }

    /** \brief Returns the Householder coefficients.
      *
      * \returns a const reference to the vector of Householder coefficients
      *
      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
      * or the member function compute(const MatrixType&) has been called
      * before to compute the Hessenberg decomposition of a matrix.
      *
      * The Householder coefficients allow the reconstruction of the matrix
      * \f$ Q \f$ in the Hessenberg decomposition from the packed data.
      *
      * \sa packedMatrix(), \ref Householder_Module "Householder module"
      */
    const CoeffVectorType& householderCoefficients() const
    {
      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
      return m_hCoeffs;
    }

    /** \brief Returns the internal representation of the decomposition
      *
      *	\returns a const reference to a matrix with the internal representation
      *	         of the decomposition.
      *
      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
      * or the member function compute(const MatrixType&) has been called
      * before to compute the Hessenberg decomposition of a matrix.
      *
      * The returned matrix contains the following information:
      *  - the upper part and lower sub-diagonal represent the Hessenberg matrix H
      *  - the rest of the lower part contains the Householder vectors that, combined with
      *    Householder coefficients returned by householderCoefficients(),
      *    allows to reconstruct the matrix Q as
      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
      *    \f$ v_i \f$ is the Householder vector defined by
      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
      *    with M the matrix returned by this function.
      *
      * See LAPACK for further details on this packed storage.
      *
      * Example: \include HessenbergDecomposition_packedMatrix.cpp
      * Output: \verbinclude HessenbergDecomposition_packedMatrix.out
      *
      * \sa householderCoefficients()
      */
    const MatrixType& packedMatrix() const
    {
      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
      return m_matrix;
    }

    /** \brief Reconstructs the orthogonal matrix Q in the decomposition
      *
      * \returns object representing the matrix Q
      *
      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
      * or the member function compute(const MatrixType&) has been called
      * before to compute the Hessenberg decomposition of a matrix.
      *
      * This function returns a light-weight object of template class
      * HouseholderSequence. You can either apply it directly to a matrix or
      * you can convert it to a matrix of type #MatrixType.
      *
      * \sa matrixH() for an example, class HouseholderSequence
      */
    HouseholderSequenceType matrixQ() const
    {
      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
             .setLength(m_matrix.rows() - 1)
             .setShift(1);
    }

    /** \brief Constructs the Hessenberg matrix H in the decomposition
      *
      * \returns expression object representing the matrix H
      *
      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
      * or the member function compute(const MatrixType&) has been called
      * before to compute the Hessenberg decomposition of a matrix.
      *
      * The object returned by this function constructs the Hessenberg matrix H
      * when it is assigned to a matrix or otherwise evaluated. The matrix H is
      * constructed from the packed matrix as returned by packedMatrix(): The
      * upper part (including the subdiagonal) of the packed matrix contains
      * the matrix H. It may sometimes be better to directly use the packed
      * matrix instead of constructing the matrix H.
      *
      * Example: \include HessenbergDecomposition_matrixH.cpp
      * Output: \verbinclude HessenbergDecomposition_matrixH.out
      *
      * \sa matrixQ(), packedMatrix()
      */
    MatrixHReturnType matrixH() const
    {
      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
      return MatrixHReturnType(*this);
    }

  private:

    typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);

  protected:
    MatrixType m_matrix;
    CoeffVectorType m_hCoeffs;
    VectorType m_temp;
    bool m_isInitialized;
};

/** \internal
  * Performs a tridiagonal decomposition of \a matA in place.
  *
  * \param matA the input selfadjoint matrix
  * \param hCoeffs returned Householder coefficients
  *
  * The result is written in the lower triangular part of \a matA.
  *
  * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1.
  *
  * \sa packedMatrix()
  */
template<typename MatrixType>
void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
{
Don Gagne's avatar
Don Gagne committed
294
  eigen_assert(matA.rows()==matA.cols());
LM's avatar
LM committed
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
  Index n = matA.rows();
  temp.resize(n);
  for (Index i = 0; i<n-1; ++i)
  {
    // let's consider the vector v = i-th column starting at position i+1
    Index remainingSize = n-i-1;
    RealScalar beta;
    Scalar h;
    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
    matA.col(i).coeffRef(i+1) = beta;
    hCoeffs.coeffRef(i) = h;

    // Apply similarity transformation to remaining columns,
    // i.e., compute A = H A H'

    // A = H A
    matA.bottomRightCorner(remainingSize, remainingSize)
        .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));

    // A = A H'
    matA.rightCols(remainingSize)
Don Gagne's avatar
Don Gagne committed
316
        .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.coeffRef(0));
LM's avatar
LM committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }
}

namespace internal {

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \brief Expression type for return value of HessenbergDecomposition::matrixH()
  *
  * \tparam MatrixType type of matrix in the Hessenberg decomposition
  *
  * Objects of this type represent the Hessenberg matrix in the Hessenberg
  * decomposition of some matrix. The object holds a reference to the
  * HessenbergDecomposition class until the it is assigned or evaluated for
  * some other reason (the reference should remain valid during the life time
  * of this object). This class is the return type of
  * HessenbergDecomposition::matrixH(); there is probably no other use for this
  * class.
  */
template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
: public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
{
    typedef typename MatrixType::Index Index;
  public:
    /** \brief Constructor.
      *
      * \param[in] hess  Hessenberg decomposition
      */
    HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }

    /** \brief Hessenberg matrix in decomposition.
      *
      * \param[out] result  Hessenberg matrix in decomposition \p hess which
      *                     was passed to the constructor
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      result = m_hess.packedMatrix();
      Index n = result.rows();
      if (n>2)
        result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
    }

    Index rows() const { return m_hess.packedMatrix().rows(); }
    Index cols() const { return m_hess.packedMatrix().cols(); }

  protected:
    const HessenbergDecomposition<MatrixType>& m_hess;
};

Don Gagne's avatar
Don Gagne committed
369 370 371
} // end namespace internal

} // end namespace Eigen
LM's avatar
LM committed
372 373

#endif // EIGEN_HESSENBERGDECOMPOSITION_H