EigenSolver.h 21.3 KB
Newer Older
LM's avatar
LM committed
1 2 3 4
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
Don Gagne's avatar
Don Gagne committed
5
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
LM's avatar
LM committed
6
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13 14 15

#ifndef EIGEN_EIGENSOLVER_H
#define EIGEN_EIGENSOLVER_H

#include "./RealSchur.h"

Don Gagne's avatar
Don Gagne committed
16 17
namespace Eigen { 

LM's avatar
LM committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class EigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of general matrices
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * eigendecomposition; this is expected to be an instantiation of the Matrix
  * class template. Currently, only real matrices are supported.
  *
  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
  *
  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
  * have blocks of the form
  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
  * this variant of the eigendecomposition the pseudo-eigendecomposition.
  *
  * Call the function compute() to compute the eigenvalues and eigenvectors of
  * a given matrix. Alternatively, you can use the 
  * EigenSolver(const MatrixType&, bool) constructor which computes the
  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
  * pseudoEigenvectors() methods allow the construction of the
  * pseudo-eigendecomposition.
  *
  * The documentation for EigenSolver(const MatrixType&, bool) contains an
  * example of the typical use of this class.
  *
  * \note The implementation is adapted from
  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
  * Their code is based on EISPACK.
  *
  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class EigenSolver
{
  public:

    /** \brief Synonym for the template parameter \p _MatrixType. */
    typedef _MatrixType MatrixType;

    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type #MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;

    /** \brief Complex scalar type for #MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 
      *
      * This is a column vector with entries of type #ComplexScalar.
      * The length of the vector is the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;

    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;

    /** \brief Default constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
      *
      * \sa compute() for an example.
      */
 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}

    /** \brief Default constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa EigenSolver()
      */
    EigenSolver(Index size)
      : m_eivec(size, size),
        m_eivalues(size),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realSchur(size),
        m_matT(size, size), 
        m_tmp(size)
    {}

    /** \brief Constructor; computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are
      *    computed. 
      *
      * This constructor calls compute() to compute the eigenvalues
      * and eigenvectors.
      *
      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
      *
      * \sa compute()
      */
    EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realSchur(matrix.cols()),
        m_matT(matrix.rows(), matrix.cols()), 
        m_tmp(matrix.cols())
    {
      compute(matrix, computeEigenvectors);
    }

    /** \brief Returns the eigenvectors of given matrix. 
      *
      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before, and
      * \p computeEigenvectors was set to true (the default).
      *
      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
      * matrix returned by this function is the matrix \f$ V \f$ in the
      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
      *
      * Example: \include EigenSolver_eigenvectors.cpp
      * Output: \verbinclude EigenSolver_eigenvectors.out
      *
      * \sa eigenvalues(), pseudoEigenvectors()
      */
    EigenvectorsType eigenvectors() const;

    /** \brief Returns the pseudo-eigenvectors of given matrix. 
      *
      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before, and
      * \p computeEigenvectors was set to true (the default).
      *
      * The real matrix \f$ V \f$ returned by this function and the
      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
      * satisfy \f$ AV = VD \f$.
      *
      * Example: \include EigenSolver_pseudoEigenvectors.cpp
      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
      *
      * \sa pseudoEigenvalueMatrix(), eigenvectors()
      */
    const MatrixType& pseudoEigenvectors() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec;
    }

    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
      *
      * \returns  A block-diagonal matrix.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before.
      *
      * The matrix \f$ D \f$ returned by this function is real and
      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
      * blocks of the form
      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
      * These blocks are not sorted in any particular order.
      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
      *
      * \sa pseudoEigenvectors() for an example, eigenvalues()
      */
    MatrixType pseudoEigenvalueMatrix() const;

    /** \brief Returns the eigenvalues of given matrix. 
      *
      * \returns A const reference to the column vector containing the eigenvalues.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before.
      *
      * The eigenvalues are repeated according to their algebraic multiplicity,
      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
      * are not sorted in any particular order.
      *
      * Example: \include EigenSolver_eigenvalues.cpp
      * Output: \verbinclude EigenSolver_eigenvalues.out
      *
      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
      *     MatrixBase::eigenvalues()
      */
    const EigenvalueType& eigenvalues() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_eivalues;
    }

    /** \brief Computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are
      *    computed. 
      * \returns    Reference to \c *this
      *
      * This function computes the eigenvalues of the real matrix \p matrix.
      * The eigenvalues() function can be used to retrieve them.  If 
      * \p computeEigenvectors is true, then the eigenvectors are also computed
      * and can be retrieved by calling eigenvectors().
      *
      * The matrix is first reduced to real Schur form using the RealSchur
      * class. The Schur decomposition is then used to compute the eigenvalues
      * and eigenvectors.
      *
      * The cost of the computation is dominated by the cost of the
      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors 
      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
      *
      * This method reuses of the allocated data in the EigenSolver object.
      *
      * Example: \include EigenSolver_compute.cpp
      * Output: \verbinclude EigenSolver_compute.out
      */
    EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);

    ComputationInfo info() const
    {
Don Gagne's avatar
Don Gagne committed
280
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
LM's avatar
LM committed
281 282 283
      return m_realSchur.info();
    }

Don Gagne's avatar
Don Gagne committed
284 285 286 287 288 289 290 291 292 293 294 295 296
    /** \brief Sets the maximum number of iterations allowed. */
    EigenSolver& setMaxIterations(Index maxIters)
    {
      m_realSchur.setMaxIterations(maxIters);
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_realSchur.getMaxIterations();
    }

LM's avatar
LM committed
297 298 299 300
  private:
    void doComputeEigenvectors();

  protected:
301 302 303 304 305 306 307
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
    }
    
LM's avatar
LM committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    MatrixType m_eivec;
    EigenvalueType m_eivalues;
    bool m_isInitialized;
    bool m_eigenvectorsOk;
    RealSchur<MatrixType> m_realSchur;
    MatrixType m_matT;

    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
    ColumnVectorType m_tmp;
};

template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
  Index n = m_eivalues.rows();
  MatrixType matD = MatrixType::Zero(n,n);
  for (Index i=0; i<n; ++i)
  {
Don Gagne's avatar
Don Gagne committed
327 328
    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
      matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
LM's avatar
LM committed
329 330
    else
    {
Don Gagne's avatar
Don Gagne committed
331 332
      matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
                                       -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
LM's avatar
LM committed
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
      ++i;
    }
  }
  return matD;
}

template<typename MatrixType>
typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
{
  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
  Index n = m_eivec.cols();
  EigenvectorsType matV(n,n);
  for (Index j=0; j<n; ++j)
  {
Don Gagne's avatar
Don Gagne committed
348
    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
LM's avatar
LM committed
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    {
      // we have a real eigen value
      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
      matV.col(j).normalize();
    }
    else
    {
      // we have a pair of complex eigen values
      for (Index i=0; i<n; ++i)
      {
        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
      }
      matV.col(j).normalize();
      matV.col(j+1).normalize();
      ++j;
    }
  }
  return matV;
}

template<typename MatrixType>
Don Gagne's avatar
Don Gagne committed
371 372
EigenSolver<MatrixType>& 
EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
LM's avatar
LM committed
373
{
374 375
  check_template_parameters();
  
Don Gagne's avatar
Don Gagne committed
376 377 378
  using std::sqrt;
  using std::abs;
  eigen_assert(matrix.cols() == matrix.rows());
LM's avatar
LM committed
379 380 381

  // Reduce to real Schur form.
  m_realSchur.compute(matrix, computeEigenvectors);
Don Gagne's avatar
Don Gagne committed
382

LM's avatar
LM committed
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  if (m_realSchur.info() == Success)
  {
    m_matT = m_realSchur.matrixT();
    if (computeEigenvectors)
      m_eivec = m_realSchur.matrixU();
  
    // Compute eigenvalues from matT
    m_eivalues.resize(matrix.cols());
    Index i = 0;
    while (i < matrix.cols()) 
    {
      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 
      {
        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
        ++i;
      }
      else
      {
        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
Don Gagne's avatar
Don Gagne committed
402
        Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
LM's avatar
LM committed
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
        i += 2;
      }
    }
    
    // Compute eigenvectors.
    if (computeEigenvectors)
      doComputeEigenvectors();
  }

  m_isInitialized = true;
  m_eigenvectorsOk = computeEigenvectors;

  return *this;
}

// Complex scalar division.
template<typename Scalar>
Don Gagne's avatar
Don Gagne committed
422
std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi)
LM's avatar
LM committed
423
{
Don Gagne's avatar
Don Gagne committed
424
  using std::abs;
LM's avatar
LM committed
425
  Scalar r,d;
Don Gagne's avatar
Don Gagne committed
426
  if (abs(yr) > abs(yi))
LM's avatar
LM committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  {
      r = yi/yr;
      d = yr + r*yi;
      return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
  }
  else
  {
      r = yr/yi;
      d = yi + r*yr;
      return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
  }
}


template<typename MatrixType>
void EigenSolver<MatrixType>::doComputeEigenvectors()
{
Don Gagne's avatar
Don Gagne committed
444
  using std::abs;
LM's avatar
LM committed
445 446 447 448
  const Index size = m_eivec.cols();
  const Scalar eps = NumTraits<Scalar>::epsilon();

  // inefficient! this is already computed in RealSchur
Don Gagne's avatar
Don Gagne committed
449
  Scalar norm(0);
LM's avatar
LM committed
450 451
  for (Index j = 0; j < size; ++j)
  {
Don Gagne's avatar
Don Gagne committed
452
    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
LM's avatar
LM committed
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  }
  
  // Backsubstitute to find vectors of upper triangular form
  if (norm == 0.0)
  {
    return;
  }

  for (Index n = size-1; n >= 0; n--)
  {
    Scalar p = m_eivalues.coeff(n).real();
    Scalar q = m_eivalues.coeff(n).imag();

    // Scalar vector
    if (q == Scalar(0))
    {
Don Gagne's avatar
Don Gagne committed
469
      Scalar lastr(0), lastw(0);
LM's avatar
LM committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
      Index l = n;

      m_matT.coeffRef(n,n) = 1.0;
      for (Index i = n-1; i >= 0; i--)
      {
        Scalar w = m_matT.coeff(i,i) - p;
        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));

        if (m_eivalues.coeff(i).imag() < 0.0)
        {
          lastw = w;
          lastr = r;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == 0.0)
          {
            if (w != 0.0)
              m_matT.coeffRef(i,n) = -r / w;
            else
              m_matT.coeffRef(i,n) = -r / (eps * norm);
          }
          else // Solve real equations
          {
            Scalar x = m_matT.coeff(i,i+1);
            Scalar y = m_matT.coeff(i+1,i);
            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
            Scalar t = (x * lastr - lastw * r) / denom;
            m_matT.coeffRef(i,n) = t;
Don Gagne's avatar
Don Gagne committed
500
            if (abs(x) > abs(lastw))
LM's avatar
LM committed
501 502 503 504 505 506
              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
            else
              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
          }

          // Overflow control
Don Gagne's avatar
Don Gagne committed
507
          Scalar t = abs(m_matT.coeff(i,n));
LM's avatar
LM committed
508 509 510 511 512 513 514
          if ((eps * t) * t > Scalar(1))
            m_matT.col(n).tail(size-i) /= t;
        }
      }
    }
    else if (q < Scalar(0) && n > 0) // Complex vector
    {
Don Gagne's avatar
Don Gagne committed
515
      Scalar lastra(0), lastsa(0), lastw(0);
LM's avatar
LM committed
516 517 518
      Index l = n-1;

      // Last vector component imaginary so matrix is triangular
Don Gagne's avatar
Don Gagne committed
519
      if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
LM's avatar
LM committed
520 521 522 523 524 525 526
      {
        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
      }
      else
      {
        std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
Don Gagne's avatar
Don Gagne committed
527 528
        m_matT.coeffRef(n-1,n-1) = numext::real(cc);
        m_matT.coeffRef(n-1,n) = numext::imag(cc);
LM's avatar
LM committed
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
      }
      m_matT.coeffRef(n,n-1) = 0.0;
      m_matT.coeffRef(n,n) = 1.0;
      for (Index i = n-2; i >= 0; i--)
      {
        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
        Scalar w = m_matT.coeff(i,i) - p;

        if (m_eivalues.coeff(i).imag() < 0.0)
        {
          lastw = w;
          lastra = ra;
          lastsa = sa;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == RealScalar(0))
          {
            std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
Don Gagne's avatar
Don Gagne committed
550 551
            m_matT.coeffRef(i,n-1) = numext::real(cc);
            m_matT.coeffRef(i,n) = numext::imag(cc);
LM's avatar
LM committed
552 553 554 555 556 557 558 559 560
          }
          else
          {
            // Solve complex equations
            Scalar x = m_matT.coeff(i,i+1);
            Scalar y = m_matT.coeff(i+1,i);
            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
            if ((vr == 0.0) && (vi == 0.0))
Don Gagne's avatar
Don Gagne committed
561
              vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
LM's avatar
LM committed
562

Don Gagne's avatar
Don Gagne committed
563 564 565 566
            std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
            m_matT.coeffRef(i,n-1) = numext::real(cc);
            m_matT.coeffRef(i,n) = numext::imag(cc);
            if (abs(x) > (abs(lastw) + abs(q)))
LM's avatar
LM committed
567 568 569 570 571 572 573
            {
              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
            }
            else
            {
              cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
Don Gagne's avatar
Don Gagne committed
574 575
              m_matT.coeffRef(i+1,n-1) = numext::real(cc);
              m_matT.coeffRef(i+1,n) = numext::imag(cc);
LM's avatar
LM committed
576 577 578 579 580
            }
          }

          // Overflow control
          using std::max;
Don Gagne's avatar
Don Gagne committed
581
          Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
LM's avatar
LM committed
582 583 584 585 586
          if ((eps * t) * t > Scalar(1))
            m_matT.block(i, n-1, size-i, 2) /= t;

        }
      }
Don Gagne's avatar
Don Gagne committed
587 588 589
      
      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
      n--;
LM's avatar
LM committed
590 591 592
    }
    else
    {
Don Gagne's avatar
Don Gagne committed
593
      eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
LM's avatar
LM committed
594 595 596 597 598 599 600 601 602 603 604
    }
  }

  // Back transformation to get eigenvectors of original matrix
  for (Index j = size-1; j >= 0; j--)
  {
    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
    m_eivec.col(j) = m_tmp;
  }
}

Don Gagne's avatar
Don Gagne committed
605 606
} // end namespace Eigen

LM's avatar
LM committed
607
#endif // EIGEN_EIGENSOLVER_H