SVD.h 18 KB
Newer Older
LM's avatar
LM committed
1
// This file is part of Eigen, a lightweight C++ template library
Don Gagne's avatar
Don Gagne committed
2
// for linear algebra.
LM's avatar
LM committed
3 4 5
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN2_SVD_H
#define EIGEN2_SVD_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen {

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/** \ingroup SVD_Module
  * \nonstableyet
  *
  * \class SVD
  *
  * \brief Standard SVD decomposition of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
  *
  * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
  * with \c M \>= \c N.
  *
  *
  * \sa MatrixBase::SVD()
  */
template<typename MatrixType> class SVD
{
  private:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;

    enum {
      PacketSize = internal::packet_traits<Scalar>::size,
      AlignmentMask = int(PacketSize)-1,
      MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
    };

    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;

    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
    typedef Matrix<Scalar, MinSize, 1> SingularValuesType;

  public:

    SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
    
    SVD(const MatrixType& matrix)
Don Gagne's avatar
Don Gagne committed
54
      : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
LM's avatar
LM committed
55
        m_matV(matrix.cols(),matrix.cols()),
Don Gagne's avatar
Don Gagne committed
56
        m_sigma((std::min)(matrix.rows(),matrix.cols()))
LM's avatar
LM committed
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    {
      compute(matrix);
    }

    template<typename OtherDerived, typename ResultType>
    bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;

    const MatrixUType& matrixU() const { return m_matU; }
    const SingularValuesType& singularValues() const { return m_sigma; }
    const MatrixVType& matrixV() const { return m_matV; }

    void compute(const MatrixType& matrix);
    SVD& sort();

    template<typename UnitaryType, typename PositiveType>
    void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
    template<typename PositiveType, typename UnitaryType>
    void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
    template<typename RotationType, typename ScalingType>
    void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
    template<typename ScalingType, typename RotationType>
    void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;

  protected:
    /** \internal */
    MatrixUType m_matU;
    /** \internal */
    MatrixVType m_matV;
    /** \internal */
    SingularValuesType m_sigma;
};

/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
  *
  * \note this code has been adapted from JAMA (public domain)
  */
template<typename MatrixType>
void SVD<MatrixType>::compute(const MatrixType& matrix)
{
  const int m = matrix.rows();
  const int n = matrix.cols();
Don Gagne's avatar
Don Gagne committed
98
  const int nu = (std::min)(m,n);
LM's avatar
LM committed
99 100 101 102 103
  ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
  ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");

  m_matU.resize(m, nu);
  m_matU.setZero();
Don Gagne's avatar
Don Gagne committed
104
  m_sigma.resize((std::min)(m,n));
LM's avatar
LM committed
105 106 107 108 109 110 111 112 113 114 115
  m_matV.resize(n,n);

  RowVector e(n);
  ColVector work(m);
  MatrixType matA(matrix);
  const bool wantu = true;
  const bool wantv = true;
  int i=0, j=0, k=0;

  // Reduce A to bidiagonal form, storing the diagonal elements
  // in s and the super-diagonal elements in e.
Don Gagne's avatar
Don Gagne committed
116 117 118
  int nct = (std::min)(m-1,n);
  int nrt = (std::max)(0,(std::min)(n-2,m));
  for (k = 0; k < (std::max)(nct,nrt); ++k)
LM's avatar
LM committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  {
    if (k < nct)
    {
      // Compute the transformation for the k-th column and
      // place the k-th diagonal in m_sigma[k].
      m_sigma[k] = matA.col(k).end(m-k).norm();
      if (m_sigma[k] != 0.0) // FIXME
      {
        if (matA(k,k) < 0.0)
          m_sigma[k] = -m_sigma[k];
        matA.col(k).end(m-k) /= m_sigma[k];
        matA(k,k) += 1.0;
      }
      m_sigma[k] = -m_sigma[k];
    }

    for (j = k+1; j < n; ++j)
    {
      if ((k < nct) && (m_sigma[k] != 0.0))
      {
        // Apply the transformation.
        Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
        t = -t/matA(k,k);
        matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
      }

      // Place the k-th row of A into e for the
      // subsequent calculation of the row transformation.
      e[j] = matA(k,j);
    }

    // Place the transformation in U for subsequent back multiplication.
    if (wantu & (k < nct))
      m_matU.col(k).end(m-k) = matA.col(k).end(m-k);

    if (k < nrt)
    {
      // Compute the k-th row transformation and place the
      // k-th super-diagonal in e[k].
      e[k] = e.end(n-k-1).norm();
      if (e[k] != 0.0)
      {
          if (e[k+1] < 0.0)
            e[k] = -e[k];
          e.end(n-k-1) /= e[k];
          e[k+1] += 1.0;
      }
      e[k] = -e[k];
      if ((k+1 < m) & (e[k] != 0.0))
      {
        // Apply the transformation.
        work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
        for (j = k+1; j < n; ++j)
          matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
      }

      // Place the transformation in V for subsequent back multiplication.
      if (wantv)
        m_matV.col(k).end(n-k-1) = e.end(n-k-1);
    }
  }


  // Set up the final bidiagonal matrix or order p.
Don Gagne's avatar
Don Gagne committed
183
  int p = (std::min)(n,m+1);
LM's avatar
LM committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  if (nct < n)
    m_sigma[nct] = matA(nct,nct);
  if (m < p)
    m_sigma[p-1] = 0.0;
  if (nrt+1 < p)
    e[nrt] = matA(nrt,p-1);
  e[p-1] = 0.0;

  // If required, generate U.
  if (wantu)
  {
    for (j = nct; j < nu; ++j)
    {
      m_matU.col(j).setZero();
      m_matU(j,j) = 1.0;
    }
    for (k = nct-1; k >= 0; k--)
    {
      if (m_sigma[k] != 0.0)
      {
        for (j = k+1; j < nu; ++j)
        {
          Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
          t = -t/m_matU(k,k);
          m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
        }
        m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
        m_matU(k,k) = Scalar(1) + m_matU(k,k);
        if (k-1>0)
          m_matU.col(k).start(k-1).setZero();
      }
      else
      {
        m_matU.col(k).setZero();
        m_matU(k,k) = 1.0;
      }
    }
  }

  // If required, generate V.
  if (wantv)
  {
    for (k = n-1; k >= 0; k--)
    {
      if ((k < nrt) & (e[k] != 0.0))
      {
        for (j = k+1; j < nu; ++j)
        {
          Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
          t = -t/m_matV(k+1,k);
          m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
        }
      }
      m_matV.col(k).setZero();
      m_matV(k,k) = 1.0;
    }
  }

  // Main iteration loop for the singular values.
  int pp = p-1;
  int iter = 0;
  Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
  while (p > 0)
  {
    int k=0;
    int kase=0;

    // Here is where a test for too many iterations would go.

    // This section of the program inspects for
    // negligible elements in the s and e arrays.  On
    // completion the variables kase and k are set as follows.

    // kase = 1     if s(p) and e[k-1] are negligible and k<p
    // kase = 2     if s(k) is negligible and k<p
    // kase = 3     if e[k-1] is negligible, k<p, and
    //              s(k), ..., s(p) are not negligible (qr step).
    // kase = 4     if e(p-1) is negligible (convergence).

    for (k = p-2; k >= -1; --k)
    {
      if (k == -1)
          break;
      if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
      {
          e[k] = 0.0;
          break;
      }
    }
    if (k == p-2)
    {
      kase = 4;
    }
    else
    {
      int ks;
      for (ks = p-1; ks >= k; --ks)
      {
        if (ks == k)
          break;
        Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
        if (ei_abs(m_sigma[ks]) <= eps*t)
        {
          m_sigma[ks] = 0.0;
          break;
        }
      }
      if (ks == k)
      {
        kase = 3;
      }
      else if (ks == p-1)
      {
        kase = 1;
      }
      else
      {
        kase = 2;
        k = ks;
      }
    }
    ++k;

    // Perform the task indicated by kase.
    switch (kase)
    {

      // Deflate negligible s(p).
      case 1:
      {
        Scalar f(e[p-2]);
        e[p-2] = 0.0;
        for (j = p-2; j >= k; --j)
        {
Don Gagne's avatar
Don Gagne committed
318
          Scalar t(numext::hypot(m_sigma[j],f));
LM's avatar
LM committed
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
          Scalar cs(m_sigma[j]/t);
          Scalar sn(f/t);
          m_sigma[j] = t;
          if (j != k)
          {
            f = -sn*e[j-1];
            e[j-1] = cs*e[j-1];
          }
          if (wantv)
          {
            for (i = 0; i < n; ++i)
            {
              t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
              m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
              m_matV(i,j) = t;
            }
          }
        }
      }
      break;

      // Split at negligible s(k).
      case 2:
      {
        Scalar f(e[k-1]);
        e[k-1] = 0.0;
        for (j = k; j < p; ++j)
        {
Don Gagne's avatar
Don Gagne committed
347
          Scalar t(numext::hypot(m_sigma[j],f));
LM's avatar
LM committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
          Scalar cs( m_sigma[j]/t);
          Scalar sn(f/t);
          m_sigma[j] = t;
          f = -sn*e[j];
          e[j] = cs*e[j];
          if (wantu)
          {
            for (i = 0; i < m; ++i)
            {
              t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
              m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
              m_matU(i,j) = t;
            }
          }
        }
      }
      break;

      // Perform one qr step.
      case 3:
      {
        // Calculate the shift.
Don Gagne's avatar
Don Gagne committed
370
        Scalar scale = (std::max)((std::max)((std::max)((std::max)(
LM's avatar
LM committed
371 372 373 374 375 376 377 378 379
                        ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
                        ei_abs(m_sigma[k])),ei_abs(e[k]));
        Scalar sp = m_sigma[p-1]/scale;
        Scalar spm1 = m_sigma[p-2]/scale;
        Scalar epm1 = e[p-2]/scale;
        Scalar sk = m_sigma[k]/scale;
        Scalar ek = e[k]/scale;
        Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
        Scalar c = (sp*epm1)*(sp*epm1);
Don Gagne's avatar
Don Gagne committed
380
        Scalar shift(0);
LM's avatar
LM committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394
        if ((b != 0.0) || (c != 0.0))
        {
          shift = ei_sqrt(b*b + c);
          if (b < 0.0)
            shift = -shift;
          shift = c/(b + shift);
        }
        Scalar f = (sk + sp)*(sk - sp) + shift;
        Scalar g = sk*ek;

        // Chase zeros.

        for (j = k; j < p-1; ++j)
        {
Don Gagne's avatar
Don Gagne committed
395
          Scalar t = numext::hypot(f,g);
LM's avatar
LM committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
          Scalar cs = f/t;
          Scalar sn = g/t;
          if (j != k)
            e[j-1] = t;
          f = cs*m_sigma[j] + sn*e[j];
          e[j] = cs*e[j] - sn*m_sigma[j];
          g = sn*m_sigma[j+1];
          m_sigma[j+1] = cs*m_sigma[j+1];
          if (wantv)
          {
            for (i = 0; i < n; ++i)
            {
              t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
              m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
              m_matV(i,j) = t;
            }
          }
Don Gagne's avatar
Don Gagne committed
413
          t = numext::hypot(f,g);
LM's avatar
LM committed
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
          cs = f/t;
          sn = g/t;
          m_sigma[j] = t;
          f = cs*e[j] + sn*m_sigma[j+1];
          m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
          g = sn*e[j+1];
          e[j+1] = cs*e[j+1];
          if (wantu && (j < m-1))
          {
            for (i = 0; i < m; ++i)
            {
              t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
              m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
              m_matU(i,j) = t;
            }
          }
        }
        e[p-2] = f;
        iter = iter + 1;
      }
      break;

      // Convergence.
      case 4:
      {
        // Make the singular values positive.
        if (m_sigma[k] <= 0.0)
        {
          m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
          if (wantv)
            m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
        }

        // Order the singular values.
        while (k < pp)
        {
          if (m_sigma[k] >= m_sigma[k+1])
            break;
          Scalar t = m_sigma[k];
          m_sigma[k] = m_sigma[k+1];
          m_sigma[k+1] = t;
          if (wantv && (k < n-1))
            m_matV.col(k).swap(m_matV.col(k+1));
          if (wantu && (k < m-1))
            m_matU.col(k).swap(m_matU.col(k+1));
          ++k;
        }
        iter = 0;
        p--;
      }
      break;
    } // end big switch
  } // end iterations
}

template<typename MatrixType>
SVD<MatrixType>& SVD<MatrixType>::sort()
{
  int mu = m_matU.rows();
  int mv = m_matV.rows();
  int n  = m_matU.cols();

  for (int i=0; i<n; ++i)
  {
    int  k = i;
    Scalar p = m_sigma.coeff(i);

    for (int j=i+1; j<n; ++j)
    {
      if (m_sigma.coeff(j) > p)
      {
        k = j;
        p = m_sigma.coeff(j);
      }
    }
    if (k != i)
    {
      m_sigma.coeffRef(k) = m_sigma.coeff(i);  // i.e.
      m_sigma.coeffRef(i) = p;                 // swaps the i-th and the k-th elements

      int j = mu;
      for(int s=0; j!=0; ++s, --j)
        std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));

      j = mv;
      for (int s=0; j!=0; ++s, --j)
        std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
    }
  }
  return *this;
}

/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
  * The parts of the solution corresponding to zero singular values are ignored.
  *
  * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
  */
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
{
515
  ei_assert(b.rows() == m_matU.rows());
LM's avatar
LM committed
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

  Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
  for (int j=0; j<b.cols(); ++j)
  {
    Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);

    for (int i = 0; i <m_matU.cols(); ++i)
    {
      Scalar si = m_sigma.coeff(i);
      if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
        aux.coeffRef(i) = 0;
      else
        aux.coeffRef(i) /= si;
    }

    result->col(j) = m_matV * aux;
  }
  return true;
}

/** Computes the polar decomposition of the matrix, as a product unitary x positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * Only for square matrices.
  *
  * \sa computePositiveUnitary(), computeRotationScaling()
  */
template<typename MatrixType>
template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
                                             PositiveType *positive) const
{
  ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
  if(unitary) *unitary = m_matU * m_matV.adjoint();
  if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
}

/** Computes the polar decomposition of the matrix, as a product positive x unitary.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * Only for square matrices.
  *
  * \sa computeUnitaryPositive(), computeRotationScaling()
  */
template<typename MatrixType>
template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
                                             PositiveType *unitary) const
{
  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
  if(unitary) *unitary = m_matU * m_matV.adjoint();
  if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
}

/** decomposes the matrix as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * This method requires the Geometry module.
  *
  * \sa computeScalingRotation(), computeUnitaryPositive()
  */
template<typename MatrixType>
template<typename RotationType, typename ScalingType>
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
{
  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
  Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
  sv.coeffRef(0) *= x;
  if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
  if(rotation)
  {
    MatrixType m(m_matU);
    m.col(0) /= x;
    rotation->lazyAssign(m * m_matV.adjoint());
  }
}

/** decomposes the matrix as a product scaling x rotation, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  * This method requires the Geometry module.
  *
  * \sa computeRotationScaling(), computeUnitaryPositive()
  */
template<typename MatrixType>
template<typename ScalingType, typename RotationType>
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
{
  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
  Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
  sv.coeffRef(0) *= x;
  if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
  if(rotation)
  {
    MatrixType m(m_matU);
    m.col(0) /= x;
    rotation->lazyAssign(m * m_matV.adjoint());
  }
}


/** \svd_module
  * \returns the SVD decomposition of \c *this
  */
template<typename Derived>
inline SVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::svd() const
{
  return SVD<PlainObject>(derived());
}

Don Gagne's avatar
Don Gagne committed
635 636
} // end namespace Eigen

LM's avatar
LM committed
637
#endif // EIGEN2_SVD_H