Dot.h 9.21 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
namespace internal {

// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
         bool NeedToTranspose = T::IsVectorAtCompileTime
                && U::IsVectorAtCompileTime
                && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
                      |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
                         // revert to || as soon as not needed anymore.
                    (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
  }
};

template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
  }
};

} // end namespace internal

/** \returns the dot product of *this with other.
  *
  * \only_for_vectors
  *
  * \note If the scalar type is complex numbers, then this function returns the hermitian
  * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
  * second variable.
  *
  * \sa squaredNorm(), norm()
  */
template<typename Derived>
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
  EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);

  eigen_assert(size() == other.size());

  return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}

#ifdef EIGEN2_SUPPORT
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
  * (conjugating the second variable). Of course this only makes a difference in the complex case.
  *
  * This method is only available in EIGEN2_SUPPORT mode.
  *
  * \only_for_vectors
  *
  * \sa dot()
  */
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  eigen_assert(size() == other.size());

  return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
}
#endif


//---------- implementation of L2 norm and related functions ----------

Don Gagne's avatar
Don Gagne committed
106 107 108
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
  * In both cases, it consists in the sum of the square of all the matrix entries.
  * For vectors, this is also equals to the dot product of \c *this with itself.
LM's avatar
LM committed
109 110 111 112 113 114
  *
  * \sa dot(), norm()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
Don Gagne's avatar
Don Gagne committed
115
  return numext::real((*this).cwiseAbs2().sum());
LM's avatar
LM committed
116 117
}

Don Gagne's avatar
Don Gagne committed
118 119 120
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
  * In both cases, it consists in the square root of the sum of the square of all the matrix entries.
  * For vectors, this is also equals to the square root of the dot product of \c *this with itself.
LM's avatar
LM committed
121 122 123 124 125 126
  *
  * \sa dot(), squaredNorm()
  */
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
Don Gagne's avatar
Don Gagne committed
127 128
  using std::sqrt;
  return sqrt(squaredNorm());
LM's avatar
LM committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

/** \returns an expression of the quotient of *this by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalize()
  */
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
  typedef typename internal::nested<Derived>::type Nested;
  typedef typename internal::remove_reference<Nested>::type _Nested;
  _Nested n(derived());
  return n / n.norm();
}

/** Normalizes the vector, i.e. divides it by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalized()
  */
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
  *this /= norm();
}

//---------- implementation of other norms ----------

namespace internal {

template<typename Derived, int p>
struct lpNorm_selector
{
  typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
Don Gagne's avatar
Don Gagne committed
167
  static inline RealScalar run(const MatrixBase<Derived>& m)
LM's avatar
LM committed
168
  {
Don Gagne's avatar
Don Gagne committed
169
    using std::pow;
LM's avatar
LM committed
170 171 172 173 174 175 176
    return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
Don Gagne's avatar
Don Gagne committed
177
  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
LM's avatar
LM committed
178 179 180 181 182 183 184 185
  {
    return m.cwiseAbs().sum();
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
Don Gagne's avatar
Don Gagne committed
186
  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
LM's avatar
LM committed
187 188 189 190 191 192 193 194
  {
    return m.norm();
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
Don Gagne's avatar
Don Gagne committed
195
  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
LM's avatar
LM committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  {
    return m.cwiseAbs().maxCoeff();
  }
};

} // end namespace internal

/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
  *          of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
  *          norm, that is the maximum of the absolute values of the coefficients of *this.
  *
  * \sa norm()
  */
template<typename Derived>
template<int p>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
  return internal::lpNorm_selector<Derived, p>::run(*this);
}

//---------- implementation of isOrthogonal / isUnitary ----------

/** \returns true if *this is approximately orthogonal to \a other,
  *          within the precision given by \a prec.
  *
  * Example: \include MatrixBase_isOrthogonal.cpp
  * Output: \verbinclude MatrixBase_isOrthogonal.out
  */
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
Don Gagne's avatar
Don Gagne committed
228
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
LM's avatar
LM committed
229 230 231
{
  typename internal::nested<Derived,2>::type nested(derived());
  typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
Don Gagne's avatar
Don Gagne committed
232
  return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
LM's avatar
LM committed
233 234 235 236 237 238 239 240 241 242 243 244 245 246
}

/** \returns true if *this is approximately an unitary matrix,
  *          within the precision given by \a prec. In the case where the \a Scalar
  *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
  *
  * \note This can be used to check whether a family of vectors forms an orthonormal basis.
  *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
  *       orthonormal basis.
  *
  * Example: \include MatrixBase_isUnitary.cpp
  * Output: \verbinclude MatrixBase_isUnitary.out
  */
template<typename Derived>
Don Gagne's avatar
Don Gagne committed
247
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
LM's avatar
LM committed
248 249 250 251 252 253 254 255 256 257 258 259 260
{
  typename Derived::Nested nested(derived());
  for(Index i = 0; i < cols(); ++i)
  {
    if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
      return false;
    for(Index j = 0; j < i; ++j)
      if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
        return false;
  }
  return true;
}

Don Gagne's avatar
Don Gagne committed
261 262
} // end namespace Eigen

LM's avatar
LM committed
263
#endif // EIGEN_DOT_H