geoddistance.m 19.6 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
function [s12, azi1, azi2, S12, m12, M12, M21, a12] = geoddistance ...
      (lat1, lon1, lat2, lon2, ellipsoid)
%GEODDISTANCE  Distance between points on an ellipsoid
%
%   [s12, azi1, azi2] = GEODDISTANCE(lat1, lon1, lat2, lon2)
%   [s12, azi1, azi2, S12, m12, M12, M21, a12] =
%      GEODDISTANCE(lat1, lon1, lat2, lon2, ellipsoid)
%
%   solves the inverse geodesic problem of finding of length and azimuths
%   of the shortest geodesic between points specified by lat1, lon1, lat2,
%   lon2.  The input latitudes and longitudes, lat1, lon1, lat2, lon2, can
%   be scalars or arrays of equal size and must be expressed in degrees.
%   The ellipsoid vector is of the form [a, e], where a is the equatorial
%   radius in meters, e is the eccentricity.  If ellipsoid is omitted, the
%   WGS84 ellipsoid (more precisely, the value returned by
%   defaultellipsoid) is used.  The output s12 is the distance in meters
%   and azi1 and azi2 are the forward azimuths at the end points in
%   degrees.  The other optional outputs, S12, m12, M12, M21, a12 are
%   documented in geoddoc.  geoddoc also gives the restrictions on the
%   allowed ranges of the arguments.
%
%   When given a combination of scalar and array inputs, the scalar inputs
%   are automatically expanded to match the size of the arrays.
%
%   This is an implementation of the algorithm given in
%
%     C. F. F. Karney, Algorithms for geodesics,
%     J. Geodesy 87, 43-55 (2013);
%     https://doi.org/10.1007/s00190-012-0578-z
%     Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
%
%   This function duplicates some of the functionality of the distance
%   function in the MATLAB mapping toolbox.  Differences are
%
%     * When the ellipsoid argument is omitted, use the WGS84 ellipsoid.
%     * The routines work for prolate (as well as oblate) ellipsoids.
%     * The azimuth at the second end point azi2 is returned.
%     * The solution is accurate to round off for abs(e) < 0.2.
%     * The algorithm converges for all pairs of input points.
%     * Additional properties of the geodesic are calcuated.
%
%   See also GEODDOC, GEODRECKON, GEODAREA, DEFAULTELLIPSOID, FLAT2ECC.

% Copyright (c) Charles Karney (2012-2019) <charles@karney.com>.
%
% This is a straightforward transcription of the C++ implementation in
% GeographicLib and the C++ source should be consulted for additional
% documentation.  This is a vector implementation and the results returned
% with array arguments are identical to those obtained with multiple calls
% with scalar arguments.  The biggest change was to eliminate the branching
% to allow a vectorized solution.

  narginchk(4, 5)
  if nargin < 5, ellipsoid = defaultellipsoid; end
  try
    S = size(lat1 + lon1 + lat2 + lon2);
  catch
    error('lat1, lon1, s12, azi1 have incompatible sizes')
  end
  if length(ellipsoid(:)) ~= 2
    error('ellipsoid must be a vector of size 2')
  end
  Z = zeros(S);
  lat1 = lat1 + Z; lon1 = lon1 + Z;
  lat2 = lat2 + Z; lon2 = lon2 + Z;
  Z = Z(:);

  degree = pi/180;
  tiny = sqrt(realmin);
  tol0 = eps;
  tolb = eps * sqrt(eps);
  maxit1 = 20;
  maxit2 = maxit1 + (-log2(eps) + 1) + 10;

  a = ellipsoid(1);
  e2 = real(ellipsoid(2)^2);
  f = e2 / (1 + sqrt(1 - e2));

  f1 = 1 - f;
  ep2 = e2 / (1 - e2);
  n = f / (2 - f);
  b = a * f1;

  distp = true;
  areap = nargout >= 4;
  redp = nargout >= 5;
  scalp = nargout >= 6;

  % mask for Lengths: 1 = distance, 2 = reduced length, 4 = geodesic scale
  lengthmask = distp;
  if redp
    lengthmask = 2;
  end
  if scalp
    lengthmask = lengthmask + 4;
  end
  A3x = A3coeff(n);
  C3x = C3coeff(n);

  [lon12, lon12s] = AngDiff(lon1(:), lon2(:));
  lonsign = 2 * (lon12 >= 0) - 1;
  lon12 = lonsign .* AngRound(lon12);
  lon12s = AngRound((180 -lon12) - lonsign .* lon12s);
  lam12 = lon12 * degree; slam12 = Z; clam12 = Z;
  l = lon12 > 90;
  [slam12( l), clam12( l)] = sincosdx(lon12s(l)); clam12(l) = -clam12(l);
  [slam12(~l), clam12(~l)] = sincosdx(lon12(~l));

  lat1 = AngRound(LatFix(lat1(:)));
  lat2 = AngRound(LatFix(lat2(:)));
  swapp = 2 * ~(abs(lat1) < abs(lat2)) - 1;
  lonsign(swapp < 0) = - lonsign(swapp < 0);
  [lat1(swapp < 0), lat2(swapp < 0)] = swap(lat1(swapp < 0), lat2(swapp < 0));

  latsign = 2 * (lat1 < 0) - 1;
  lat1 = latsign .* lat1;
  lat2 = latsign .* lat2;

  [sbet1, cbet1] = sincosdx(lat1); sbet1 = f1 * sbet1;
  [sbet1, cbet1] = norm2(sbet1, cbet1); cbet1 = max(tiny, cbet1);

  [sbet2, cbet2] = sincosdx(lat2); sbet2 = f1 * sbet2;
  [sbet2, cbet2] = norm2(sbet2, cbet2); cbet2 = max(tiny, cbet2);

  c = cbet1 < -sbet1 & cbet2 == cbet1;
  sbet2(c) = (2 * (sbet2(c) < 0) - 1) .* sbet1(c);
  c = ~(cbet1 < -sbet1) & abs(sbet2) == - sbet1;
  cbet2(c) = cbet1(c);

  dn1 = sqrt(1 + ep2 * sbet1.^2);
  dn2 = sqrt(1 + ep2 * sbet2.^2);

  sig12 = Z; ssig1 = Z; csig1 = Z; ssig2 = Z; csig2 = Z;
  calp1 = Z; salp1 = Z; calp2 = Z; salp2 = Z;
  s12 = Z; m12 = Z; M12 = Z; M21 = Z;
  omg12 = Z; somg12 = 2+Z; comg12 = Z; domg12 = Z;

  m = lat1 == -90 | slam12 == 0;

  if any(m)
    calp1(m) = clam12(m); salp1(m) = slam12(m);
    calp2(m) = 1; salp2(m) = 0;

    ssig1(m) = sbet1(m); csig1(m) = calp1(m) .* cbet1(m);
    ssig2(m) = sbet2(m); csig2(m) = calp2(m) .* cbet2(m);

    sig12(m) = ...
        atan2(0 + max(0, csig1(m) .* ssig2(m) - ssig1(m) .* csig2(m)), ...
              csig1(m) .* csig2(m) + ssig1(m) .* ssig2(m));

    [s12(m), m12(m), ~, M12(m), M21(m)] = ...
        Lengths(n, sig12(m), ...
                ssig1(m), csig1(m), dn1(m), ssig2(m), csig2(m), dn2(m), ...
                cbet1(m), cbet2(m), bitor(1+2, lengthmask), ep2);
    m = m & (sig12 < 1 | m12 >= 0);
    g = m & sig12 < 3 * tiny;
    sig12(g) = 0; s12(g) = 0; m12(g) = 0;
    m12(m) = m12(m) * b;
    s12(m) = s12(m) * b;
  end

  eq = ~m & sbet1 == 0;
  if f > 0
    eq = eq & lon12s >= f * 180;
  end
  calp1(eq) = 0; calp2(eq) = 0; salp1(eq) = 1; salp2(eq) = 1;
  s12(eq) = a * lam12(eq); sig12(eq) = lam12(eq) / f1; omg12(eq) = sig12(eq);
  m12(eq) = b * sin(omg12(eq)); M12(eq) = cos(omg12(eq)); M21(eq) = M12(eq);

  g = ~eq & ~m;

  if any(g)
    dnm = Z;
    [sig12(g), salp1(g), calp1(g), salp2(g), calp2(g), dnm(g)] = ...
        InverseStart(sbet1(g), cbet1(g), dn1(g), ...
                     sbet2(g), cbet2(g), dn2(g), ...
                     lam12(g), slam12(g), clam12(g), f, A3x);

    s = g & sig12 >= 0;
    s12(s) = b * sig12(s) .* dnm(s);
    m12(s) = b * dnm(s).^2 .* sin(sig12(s) ./ dnm(s));
    if scalp
      M12(s) = cos(sig12(s) ./ dnm(s)); M21(s) = M12(s);
    end
    omg12(s) = lam12(s) ./ (f1 * dnm(s));

    g = g & sig12 < 0;

    salp1a = Z + tiny; calp1a = Z + 1;
    salp1b = Z + tiny; calp1b = Z - 1;
    ssig1 = Z; csig1 = Z; ssig2 = Z; csig2 = Z;
    epsi = Z; v = Z; dv = Z;
    numit = Z;
    tripn = Z > 0;
    tripb = tripn;
    if any(g)
      gsave = g;
      for k = 0 : maxit2 - 1
        if k == 0 && ~any(g), break, end
        numit(g) = k;
        [v(g), dv(g), ...
         salp2(g), calp2(g), sig12(g), ...
         ssig1(g), csig1(g), ssig2(g), csig2(g), epsi(g), domg12(g)] = ...
            Lambda12(sbet1(g), cbet1(g), dn1(g), ...
                     sbet2(g), cbet2(g), dn2(g), ...
                     salp1(g), calp1(g), slam12(g), clam12(g), f, A3x, C3x);
        g = g & ~(tripb | ~(abs(v) >= ((tripn * 7) + 1) * tol0));
        if ~any(g), break, end

        c = g & v > 0;
        if k <= maxit1
          c = c & calp1 ./ salp1 > calp1b ./ salp1b;
        end
        salp1b(c) = salp1(c); calp1b(c) = calp1(c);

        c = g & v < 0;
        if k <= maxit1
          c = c & calp1 ./ salp1 < calp1a ./ salp1a;
        end
        salp1a(c) = salp1(c); calp1a(c) = calp1(c);

        if k == maxit1, tripn(g) = false; end
        if k < maxit1
          dalp1 = -v ./ dv;
          sdalp1 = sin(dalp1); cdalp1 = cos(dalp1);
          nsalp1 = salp1 .* cdalp1 + calp1 .* sdalp1;
          calp1(g) = calp1(g) .* cdalp1(g) - salp1(g) .* sdalp1(g);
          salp1(g) = nsalp1(g);
          tripn = g & abs(v) <= 16 * tol0;
          c = g & ~(dv > 0 & nsalp1 > 0 & abs(dalp1) < pi);
          tripn(c) = false;
        else
          c = g;
        end

        salp1(c) = (salp1a(c) + salp1b(c))/2;
        calp1(c) = (calp1a(c) + calp1b(c))/2;
        [salp1(g), calp1(g)] = norm2(salp1(g), calp1(g));
        tripb(c) = abs(salp1a(c)-salp1(c)) + (calp1a(c)-calp1(c)) < tolb ...
            |      abs(salp1(c)-salp1b(c)) + (calp1(c)-calp1b(c)) < tolb;
      end

      g = gsave;
      if bitand(2+4, lengthmask)
        % set distance bit if redp or scalp, so that J12 is computed in a
        % canonical way.
        lengthmask = bitor(1, lengthmask);
      end

      [s12(g), m12(g), ~, M12(g), M21(g)] = ...
          Lengths(epsi(g), sig12(g), ...
                  ssig1(g), csig1(g), dn1(g), ssig2(g), csig2(g), dn2(g), ...
                  cbet1(g), cbet2(g), lengthmask, ep2);

      m12(g) = m12(g) * b;
      s12(g) = s12(g) * b;
      if areap
        sdomg12 = sin(domg12(g)); cdomg12 = cos(domg12(g));
        somg12(g) = slam12(g) .* cdomg12 - clam12(g) .* sdomg12;
        comg12(g) = clam12(g) .* cdomg12 + slam12(g) .* sdomg12;
      end
    end
  end

  s12 = 0 + s12;

  if areap
    salp0 = salp1 .* cbet1; calp0 = hypot(calp1, salp1 .* sbet1);
    ssig1 = sbet1; csig1 = calp1 .* cbet1;
    ssig2 = sbet2; csig2 = calp2 .* cbet2;
    % Stop complaints from norm2 for equatorial geodesics
    csig1(calp0 == 0) = 1; csig2(calp0 == 0) = 1;
    k2 = calp0.^2 * ep2;
    epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
    A4 = (a^2 * e2) * calp0 .* salp0;
    [ssig1, csig1] = norm2(ssig1, csig1);
    [ssig2, csig2] = norm2(ssig2, csig2);

    C4x = C4coeff(n);
    Ca = C4f(epsi, C4x);
    B41 = SinCosSeries(false, ssig1, csig1, Ca);
    B42 = SinCosSeries(false, ssig2, csig2, Ca);
    S12 = A4 .* (B42 - B41);
    S12(calp0 == 0 | salp0 == 0) = 0;

    l = ~m & somg12 > 1;
    somg12(l) = sin(omg12(l)); comg12(l) = cos(omg12(l));

    l = ~m & comg12 > -0.7071 & sbet2 - sbet1 < 1.75;
    alp12 = Z;
    domg12 = 1 + comg12(l);
    dbet1 = 1 + cbet1(l); dbet2 = 1 + cbet2(l);
    alp12(l) = 2 * ...
        atan2(somg12(l) .* (sbet1(l) .* dbet2 + sbet2(l) .* dbet1), ...
              domg12    .* (sbet1(l) .* sbet2(l) + dbet1 .* dbet2));
    l = ~l;
    salp12 = salp2(l) .* calp1(l) - calp2(l) .* salp1(l);
    calp12 = calp2(l) .* calp1(l) + salp2(l) .* salp1(l);
    s = salp12 == 0 & calp12 < 0;
    salp12(s) = tiny * calp1(s); calp12(s) = -1;
    alp12(l) = atan2(salp12, calp12);
    if e2 ~= 0
      c2 = (a^2 + b^2 * eatanhe(1, e2) / e2) / 2;
    else
      c2 = a^2;
    end
    S12 = 0 + swapp .* lonsign .* latsign .* (S12 + c2 * alp12);
  end

  [salp1(swapp<0), salp2(swapp<0)] = swap(salp1(swapp<0), salp2(swapp<0));
  [calp1(swapp<0), calp2(swapp<0)] = swap(calp1(swapp<0), calp2(swapp<0));
  if scalp
    [M12(swapp<0), M21(swapp<0)] = swap(M12(swapp<0), M21(swapp<0));
    M12 = reshape(M12, S); M21 = reshape(M21, S);
  end
  salp1 = salp1 .* swapp .* lonsign; calp1 = calp1 .* swapp .* latsign;
  salp2 = salp2 .* swapp .* lonsign; calp2 = calp2 .* swapp .* latsign;

  azi1 = atan2dx(salp1, calp1);
  azi2 = atan2dx(salp2, calp2);
  a12 = sig12 / degree;

  s12 = reshape(s12, S); azi1 = reshape(azi1, S); azi2 = reshape(azi2, S);
  if redp
    m12 = reshape(m12, S);
  end
  if nargout >= 8
    a12 = reshape(a12, S);
  end
  if areap
    S12 = reshape(S12, S);
  end
end

function [sig12, salp1, calp1, salp2, calp2, dnm] = ...
      InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2, ...
                   lam12, slam12, clam12, f, A3x)
%INVERSESTART  Compute a starting point for Newton's method

  N = length(sbet1);
  f1 = 1 - f;
  e2 = f * (2 - f);
  ep2 = e2 / (1 - e2);
  n = f / (2 - f);
  tol0 = eps;
  tol1 = 200 * tol0;
  tol2 = sqrt(eps);
  etol2 = 0.1 * tol2 / sqrt( max(0.001, abs(f)) * min(1, 1 - f/2) / 2 );
  xthresh = 1000 * tol2;

  sig12 = -ones(N, 1); salp2 = nan(N, 1); calp2 = nan(N, 1);
  sbet12 = sbet2 .* cbet1 - cbet2 .* sbet1;
  cbet12 = cbet2 .* cbet1 + sbet2 .* sbet1;
  sbet12a = sbet2 .* cbet1 + cbet2 .* sbet1;
  s = cbet12 >= 0 & sbet12 < 0.5 & cbet2 .* lam12 < 0.5;
  omg12 = lam12;
  dnm = nan(N, 1);
  sbetm2 = (sbet1(s) + sbet2(s)).^2;
  sbetm2 = sbetm2 ./ (sbetm2 + (cbet1(s) + cbet2(s)).^2);
  dnm(s) = sqrt(1 + ep2 * sbetm2);
  omg12(s) = omg12(s) ./ (f1 * dnm(s));
  somg12 = slam12; comg12 = clam12;
  somg12(s) = sin(omg12(s)); comg12(s) = cos(omg12(s));

  salp1 = cbet2 .* somg12;
  t = cbet2 .* sbet1 .* somg12.^2;
  calp1 = cvmgt(sbet12  + t ./ max(1, 1 + comg12), ...
                sbet12a - t ./ max(1, 1 - comg12), ...
                comg12 >= 0);

  ssig12 = hypot(salp1, calp1);
  csig12 = sbet1 .* sbet2 + cbet1 .* cbet2 .* comg12;

  s = s & ssig12 < etol2;
  salp2(s) = cbet1(s) .* somg12(s);
  calp2(s) = somg12(s).^2 ./ (1 + comg12(s));
  calp2(s & comg12 < 0) = 1 - comg12(s & comg12 < 0);
  calp2(s) = sbet12(s) - cbet1(s) .* sbet2(s) .* calp2(s);
  [salp2, calp2] = norm2(salp2, calp2);
  sig12(s) = atan2(ssig12(s), csig12(s));

  s = ~(s | abs(n) > 0.1 | csig12 >= 0 | ssig12 >= 6 * abs(n) * pi * cbet1.^2);

  if any(s)
    lam12x = atan2(-slam12(s), -clam12(s));
    if f >= 0
      k2 = sbet1(s).^2 * ep2;
      epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
      lamscale = f * cbet1(s) .* A3f(epsi, A3x) * pi;
      betscale = lamscale .* cbet1(s);
      x = lam12x ./ lamscale;
      y = sbet12a(s) ./ betscale;
    else
      cbet12a = cbet2(s) .* cbet1(s) - sbet2(s) .* sbet1(s);
      bet12a = atan2(sbet12a(s), cbet12a);
      [~, m12b, m0] = ...
          Lengths(n, pi + bet12a, ...
                  sbet1(s), -cbet1(s), dn1(s), sbet2(s), cbet2(s), dn2(s), ...
                  cbet1(s), cbet2(s), 2);
      x = -1 + m12b ./ (cbet1(s) .* cbet2(s) .* m0 * pi);
      betscale = cvmgt(sbet12a(s) ./ min(-0.01, x), - f * cbet1(s).^2 * pi, ...
                       x < -0.01);
     lamscale = betscale ./ cbet1(s);
      y = lam12x ./ lamscale;
    end
    k = Astroid(x, y);
    str = y > -tol1 & x > -1 - xthresh;
    k(str) = 1;
    if f >= 0
      omg12a = -x .* k ./ (1 + k);
    else
      omg12a = -y .* (1 + k) ./ k;
    end
    omg12a = lamscale .* omg12a;
    somg12 = sin(omg12a); comg12 = -cos(omg12a);
    salp1(s) = cbet2(s) .* somg12;
    calp1(s) = sbet12a(s) - cbet2(s) .* sbet1(s) .* somg12.^2 ./ (1 - comg12);

    if any(str)
      salp1s = salp1(s); calp1s = calp1(s);
      if f >= 0
        salp1s(str) = min(1, -x(str));
        calp1s(str) = -sqrt(1 - salp1s(str).^2);
      else
        calp1s(str) = max(cvmgt(0, -1, x(str) > -tol1), x(str));
        salp1s(str) = sqrt(1 - calp1s(str).^2);
      end
      salp1(s) = salp1s; calp1(s) = calp1s;
    end
  end

  calp1(salp1 <= 0) = 0; salp1(salp1 <= 0) = 1;
  [salp1, calp1] = norm2(salp1, calp1);
end

function k = Astroid(x, y)
% ASTROID  Solve the astroid equation
%
%   K = ASTROID(X, Y) solves the quartic polynomial Eq. (55)
%
%     K^4 + 2 * K^3 - (X^2 + Y^2 - 1) * K^2 - 2*Y^2 * K - Y^2 = 0
%
%   for the positive root K.  X and Y are column vectors of the same size
%   and the returned value K has the same size.

  k = zeros(length(x), 1);
  p = x.^2;
  q = y.^2;
  r = (p + q - 1) / 6;
  fl1 = ~(q == 0 & r <= 0);
  p = p(fl1);
  q = q(fl1);
  r = r(fl1);
  S = p .* q / 4;
  r2 = r.^2;
  r3 = r .* r2;
  disc = S .* (S + 2 * r3);
  u = r;
  fl2 = disc >= 0;
  T3 = S(fl2) + r3(fl2);
  T3 = T3 + (1 - 2 * (T3 < 0)) .* sqrt(disc(fl2));
  T = cbrtx(T3);
  u(fl2) = u(fl2) + T + r2(fl2) ./ cvmgt(T, inf, T ~= 0);
  ang = atan2(sqrt(-disc(~fl2)), -(S(~fl2) + r3(~fl2)));
  u(~fl2) = u(~fl2) + 2 * r(~fl2) .* cos(ang / 3);
  v = sqrt(u.^2 + q);
  uv = u + v;
  fl2 = u < 0;
  uv(fl2) = q(fl2) ./ (v(fl2) - u(fl2));
  w = (uv - q) ./ (2 * v);
  k(fl1) = uv ./ (sqrt(uv + w.^2) + w);
end

function [lam12, dlam12, ...
          salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, epsi, ...
          domg12] = ...
    Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, ...
             slam120, clam120, f, A3x, C3x)
%LAMBDA12  Solve the hybrid problem

  tiny = sqrt(realmin);
  f1 = 1 - f;
  e2 = f * (2 - f);
  ep2 = e2 / (1 - e2);

  calp1(sbet1 == 0 & calp1 == 0) = -tiny;

  salp0 = salp1 .* cbet1;
  calp0 = hypot(calp1, salp1 .* sbet1);

  ssig1 = sbet1; somg1 = salp0 .* sbet1;
  csig1 = calp1 .* cbet1; comg1 = csig1;
  [ssig1, csig1] = norm2(ssig1, csig1);

  salp2 = cvmgt(salp0 ./ cbet2, salp1, cbet2 ~= cbet1);
  calp2 = cvmgt(sqrt((calp1 .* cbet1).^2 + ...
                     cvmgt((cbet2 - cbet1) .* (cbet1 + cbet2), ...
                           (sbet1 - sbet2) .* (sbet1 + sbet2), ...
                           cbet1 < -sbet1)) ./ cbet2, ...
                abs(calp1), cbet2 ~= cbet1 | abs(sbet2) ~= -sbet1);
  ssig2 = sbet2; somg2 = salp0 .* sbet2;
  csig2 = calp2 .* cbet2;  comg2 = csig2;
  [ssig2, csig2] = norm2(ssig2, csig2);

  sig12 = atan2(0 + max(0, csig1 .* ssig2 - ssig1 .* csig2), ...
                csig1 .* csig2 + ssig1 .* ssig2);

  somg12 = 0 + max(0, comg1 .* somg2 - somg1 .* comg2);
  comg12 =            comg1 .* comg2 + somg1 .* somg2;
  eta = atan2(somg12 .* clam120 - comg12 .* slam120, ...
              comg12 .* clam120 + somg12 .* slam120);
  k2 = calp0.^2 * ep2;
  epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
  Ca = C3f(epsi, C3x);
  B312 = SinCosSeries(true, ssig2, csig2, Ca) - ...
         SinCosSeries(true, ssig1, csig1, Ca);
  domg12 = -f * A3f(epsi, A3x) .* salp0 .* (sig12 + B312);
  lam12 = eta + domg12;

  [~, dlam12] = ...
      Lengths(epsi, sig12, ...
              ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, 2);
  z = calp2 == 0;
  dlam12(~z) = dlam12(~z) .* f1 ./ (calp2(~z) .* cbet2(~z));
  dlam12(z) = - 2 * f1 .* dn1(z) ./ sbet1(z);
end

function [s12b, m12b, m0, M12, M21] = ...
      Lengths(epsi, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, ...
              cbet1, cbet2, outmask, ep2)
%LENGTHS  Compute various lengths associate with a geodesic

  N = nan(size(sig12));
  if bitand(1+2+4, outmask)
    A1 = A1m1f(epsi);
    Ca = C1f(epsi);
    if bitand(2+4, outmask)
      A2 = A2m1f(epsi);
      Cb = C2f(epsi);
      m0 = A1 - A2;
      A2 = 1 + A2;
    end
    A1 = 1 + A1;
  end
  if bitand(1, outmask)
    B1 = SinCosSeries(true, ssig2, csig2, Ca) - ...
         SinCosSeries(true, ssig1, csig1, Ca);
    s12b = A1 .* (sig12 + B1);
    if bitand(2+4, outmask)
      B2 = SinCosSeries(true, ssig2, csig2, Cb) - ...
           SinCosSeries(true, ssig1, csig1, Cb);
      J12 = m0 .* sig12 + (A1 .* B1 - A2 .* B2);
    end
  else
    s12b = N;                           % assign arbitrary unused result
    if bitand(2+4, outmask)
      for l = 1 : size(Cb, 2)
        % Assume here that size(Ca, 2) >= size(Cb, 2)
        Cb(:, l) = A1 .* Ca(:, l) - A2 .* Cb(:, l);
      end
      J12 = m0 .* sig12 + (SinCosSeries(true, ssig2, csig2, Cb) - ...
                           SinCosSeries(true, ssig1, csig1, Cb));
    end
  end
  if bitand(2, outmask)
    m12b = dn2 .* (csig1 .* ssig2) - dn1 .* (ssig1 .* csig2) - ...
           csig1 .* csig2 .* J12;
  else
    m0 = N; m12b = N;                   % assign arbitrary unused result
  end
  if bitand(4, outmask)
    csig12 = csig1 .* csig2 + ssig1 .* ssig2;
    t = ep2 * (cbet1 - cbet2) .* (cbet1 + cbet2) ./ (dn1 + dn2);
    M12 = csig12 + (t .* ssig2 - csig2 .* J12) .* ssig1 ./ dn1;
    M21 = csig12 - (t .* ssig1 - csig1 .* J12) .* ssig2 ./ dn2;
  else
    M12 = N; M21 = N;                   % assign arbitrary unused result
  end
end