CircularGenerator.cpp 19.1 KB
Newer Older
1 2 3
#include "CircularGenerator.h"

#include "QGCLoggingCategory.h"
4
#include "SettingsFact.h"
5 6

#define CLIPPER_SCALE 1000000
7 8 9 10 11 12 13 14
#include "RoutingThread.h"
#include "geometry/GenericCircle.h"
#include "geometry/MeasurementArea.h"
#include "geometry/SafeArea.h"
#include "geometry/clipper/clipper.hpp"
#include "nemo_interface/SnakeTile.h"

QGC_LOGGING_CATEGORY(CircularGeneratorLog, "CircularGeneratorLog")
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

using namespace ClipperLib;
template <> inline auto get<0>(const IntPoint &p) { return p.X; }
template <> inline auto get<1>(const IntPoint &p) { return p.Y; }

namespace routing {

bool circularTransects(const snake::FPoint &reference,
                       const snake::FPolygon &polygon,
                       const std::vector<snake::FPolygon> &tiles,
                       snake::Length deltaR, snake::Angle deltaAlpha,
                       snake::Length minLength, snake::Transects &transects);

const char *CircularGenerator::settingsGroup = "CircularGenerator";
const char *CircularGenerator::distanceName = "TransectDistance";
const char *CircularGenerator::deltaAlphaName = "DeltaAlpha";
const char *CircularGenerator::minLengthName = "MinLength";
const char *CircularGenerator::refPointLatitudeName = "ReferencePointLat";
const char *CircularGenerator::refPointLongitudeName = "ReferencePointLong";
const char *CircularGenerator::refPointAltitudeName = "ReferencePointAlt";

CircularGenerator::CircularGenerator(QObject *parent)
    : CircularGenerator(nullptr, parent) {}

CircularGenerator::CircularGenerator(GeneratorBase::Data d, QObject *parent)
    : GeneratorBase(d, parent), _connectionsEstablished(false),
      _metaDataMap(FactMetaData::createMapFromJsonFile(
          QStringLiteral(":/json/CircularGenerator.SettingsGroup.json"), this)),
      _distance(settingsGroup, _metaDataMap[distanceName]),
      _deltaAlpha(settingsGroup, _metaDataMap[deltaAlphaName]),
      _minLength(settingsGroup, _metaDataMap[minLengthName]) {
  establishConnections();
}

QString CircularGenerator::editorQml() {
  return QStringLiteral("CircularGeneratorEditor.qml");
}

QString CircularGenerator::mapVisualQml() {
  return QStringLiteral("CircularGeneratorMapVisual.qml");
}

QString CircularGenerator::name() {
  return QStringLiteral("Circular Generator");
}

QString CircularGenerator::abbreviation() { return QStringLiteral("C. Gen."); }

bool CircularGenerator::get(Generator &generator) {
  if (this->_d) {
    if (this->_d->isValid()) {
      // Prepare data.
      auto origin = this->_d->origin();
      origin.setAltitude(0);
      if (!origin.isValid()) {
        qCDebug(CircularGeneratorLog) << "get(): origin invalid." << origin;
        return false;
      }

      auto ref = this->_reference;
      ref.setAltitude(0);
      if (!ref.isValid()) {
        qCDebug(CircularGeneratorLog) << "get(): reference invalid." << ref;
        return false;
      }
      snake::FPoint reference;
      snake::toENU(origin, ref, reference);

83 84 85 86 87 88 89
      auto measurementArea =
          getGeoArea<const MeasurementArea *>(*this->_d->areaList());
      if (measurementArea == nullptr) {
        qCDebug(CircularGeneratorLog) << "get(): measurement area == nullptr";
        return false;
      }
      auto geoPolygon = measurementArea->coordinateList();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      for (auto &v : geoPolygon) {
        if (v.isValid()) {
          v.setAltitude(0);
        } else {
          qCDebug(CircularGeneratorLog) << "get(): measurement area invalid.";
          for (const auto &w : geoPolygon) {
            qCDebug(CircularGeneratorLog) << w;
          }
          return false;
        }
      }
      auto pPolygon = std::make_shared<snake::FPolygon>();
      snake::areaToEnu(origin, geoPolygon, *pPolygon);

      // Progress and tiles.
105 106
      const auto &progress = measurementArea->progress();
      const auto *tiles = measurementArea->tiles();
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
      if (progress.size() == tiles->count()) {
        for (int i = 0; i < tiles->count(); ++i) {
          if (progress[i] == 100) {
            const auto *obj = (*tiles)[int(i)];
            const auto *tile = qobject_cast<const SnakeTile *>(obj);

            if (tile != nullptr) {
              snake::FPolygon tileENU;
              snake::areaToEnu(origin, tile->coordinateList(), tileENU);
              pTiles->push_back(std::move(tileENU));
            } else {
              qCDebug(CircularGeneratorLog)
                  << "get(): progress.size() != tiles->count().";
              return false;
            }
          }
        }
      } else {
        qCDebug(CircularGeneratorLog)
            << "get(): progress.size() != tiles->count().";
        return false;
      }

131 132 133 134 135 136
      auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
      if (measurementArea == nullptr) {
        qCDebug(CircularGeneratorLog) << "get(): measurement area == nullptr";
        return false;
      }
      auto geoDepot = serviceArea->depot();
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      if (!geoDepot.isValid()) {
        qCDebug(CircularGeneratorLog) << "get(): depot invalid." << geoDepot;
        return false;
      }
      snake::FPoint depot;
      snake::toENU(origin, geoDepot, depot);

      // Fetch transect parameter.
      auto distance =
          snake::Length(this->_distance.rawValue().toDouble() * bu::si::meter);
      auto minLength =
          snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
      auto alpha = snake::Angle(this->_deltaAlpha.rawValue().toDouble() *
                                bu::degree::degree);

      generator = [reference, depot, pPolygon, pTiles, distance, alpha,
                   minLength](snake::Transects &transects) -> bool {
        bool value = circularTransects(reference, *pPolygon, *pTiles, distance,
                                       alpha, minLength, transects);
        transects.insert(transects.begin(), snake::FLineString{depot});
        return value;
      };
      return true;
    } else {
      qCDebug(CircularGeneratorLog) << "get(): data invalid.";
      return false;
    }
  } else {
    qCDebug(CircularGeneratorLog) << "get(): data member not set.";
    return false;
  }
}

QGeoCoordinate CircularGenerator::reference() const { return _reference; }

void CircularGenerator::setReference(const QGeoCoordinate &reference) {
  if (_reference != reference) {
    _reference = reference;
    emit referenceChanged();
  }
}

void CircularGenerator::resetReferenceIfInvalid() {
  if (!this->_reference.isValid()) {
    resetReference();
  }
}

void CircularGenerator::resetReference() {
186 187 188 189 190 191 192 193 194 195
  auto measurementArea =
      getGeoArea<const MeasurementArea *>(*this->_d->areaList());

  if (measurementArea != nullptr) {
    if (measurementArea->center().isValid()) {
      setReference(measurementArea->center());
    } else {
      qCWarning(CircularGeneratorLog)
          << "measurement area center" << measurementArea->center();
    }
196
  } else {
197 198
    qCDebug(CircularGeneratorLog)
        << "resetReference(): measurement area == nullptr";
199 200 201 202 203
  }
}

void CircularGenerator::establishConnections() {
  if (this->_d && !this->_connectionsEstablished) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    auto measurementArea =
        getGeoArea<const MeasurementArea *>(*this->_d->areaList());
    auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
    if (measurementArea != nullptr && serviceArea != nullptr) {
      GeneratorBase::establishConnections();

      connect(this->_d, &AreaData::originChanged, this,
              &GeneratorBase::generatorChanged);
      connect(measurementArea, &MeasurementArea::progressChanged, this,
              &GeneratorBase::generatorChanged);
      connect(measurementArea, &MeasurementArea::tilesChanged, this,
              &GeneratorBase::generatorChanged);
      connect(measurementArea, &MeasurementArea::centerChanged, this,
              &CircularGenerator::resetReferenceIfInvalid);
      connect(measurementArea, &MeasurementArea::pathChanged, this,
              &GeneratorBase::generatorChanged);
      connect(serviceArea, &SafeArea::depotChanged, this,
              &GeneratorBase::generatorChanged);
      connect(this->distance(), &Fact::rawValueChanged, this,
              &GeneratorBase::generatorChanged);
      connect(this->deltaAlpha(), &Fact::rawValueChanged, this,
              &GeneratorBase::generatorChanged);
      connect(this->minLength(), &Fact::rawValueChanged, this,
              &GeneratorBase::generatorChanged);
      connect(this, &CircularGenerator::referenceChanged, this,
              &GeneratorBase::generatorChanged);
      this->_connectionsEstablished = true;
    }
232 233 234 235 236
  }
}

void CircularGenerator::deleteConnections() {
  if (this->_d && this->_connectionsEstablished) {
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    auto measurementArea =
        getGeoArea<const MeasurementArea *>(*this->_d->areaList());
    auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
    if (measurementArea != nullptr && serviceArea != nullptr) {
      GeneratorBase::deleteConnections();

      disconnect(this->_d, &AreaData::originChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(measurementArea, &MeasurementArea::progressChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(measurementArea, &MeasurementArea::tilesChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(measurementArea, &MeasurementArea::centerChanged, this,
                 &CircularGenerator::resetReferenceIfInvalid);
      disconnect(measurementArea, &MeasurementArea::pathChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(serviceArea, &SafeArea::depotChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(this->distance(), &Fact::rawValueChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(this->deltaAlpha(), &Fact::rawValueChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(this->minLength(), &Fact::rawValueChanged, this,
                 &GeneratorBase::generatorChanged);
      disconnect(this, &CircularGenerator::referenceChanged, this,
                 &GeneratorBase::generatorChanged);
      this->_connectionsEstablished = true;
    }
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  }
}

Fact *CircularGenerator::distance() { return &_distance; }

Fact *CircularGenerator::deltaAlpha() { return &_deltaAlpha; }

Fact *CircularGenerator::minLength() { return &_minLength; }

bool circularTransects(const snake::FPoint &reference,
                       const snake::FPolygon &polygon,
                       const std::vector<snake::FPolygon> &tiles,
                       snake::Length deltaR, snake::Angle deltaAlpha,
                       snake::Length minLength, snake::Transects &transects) {
  auto s1 = std::chrono::high_resolution_clock::now();

  // Check preconitions
  if (polygon.outer().size() >= 3) {
    using namespace boost::units;
    // Convert geo polygon to ENU polygon.
    std::string error;
    // Check validity.
    if (!bg::is_valid(polygon, error)) {
      qCDebug(CircularGeneratorLog) << "circularTransects(): "
                                       "invalid polygon.";
      qCDebug(CircularGeneratorLog) << error.c_str();
      std::stringstream ss;
      ss << bg::wkt(polygon);
      qCDebug(CircularGeneratorLog) << ss.str().c_str();
    } else {
      // Calculate polygon distances and angles.
      std::vector<snake::Length> distances;
      distances.reserve(polygon.outer().size());
      std::vector<snake::Angle> angles;
      angles.reserve(polygon.outer().size());
      //#ifdef DEBUG_CIRCULAR_SURVEY
      //      qCDebug(CircularGeneratorLog) << "circularTransects():";
      //#endif
      for (const auto &p : polygon.outer()) {
        snake::Length distance = bg::distance(reference, p) * si::meter;
        distances.push_back(distance);
        snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian;
        alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha;
        angles.push_back(alpha);
        //#ifdef DEBUG_CIRCULAR_SURVEY
        //        qCDebug(CircularGeneratorLog) << "distances, angles,
        //        coordinates:"; qCDebug(CircularGeneratorLog) <<
        //        to_string(distance).c_str(); qCDebug(CircularGeneratorLog)
        //        << to_string(snake::Degree(alpha)).c_str();
        //        qCDebug(CircularGeneratorLog) << "x = " << p.get<0>() << "y
        //        = "
        //        << p.get<1>();
        //#endif
      }

      auto rMin = deltaR; // minimal circle radius
      snake::Angle alpha1(0 * degree::degree);
      snake::Angle alpha2(360 * degree::degree);
      // Determine r_min by successive approximation
      if (!bg::within(reference, polygon.outer())) {
        rMin = bg::distance(reference, polygon) * si::meter;
      }

      auto rMax = (*std::max_element(distances.begin(),
                                     distances.end())); // maximal circle radius

      // Scale parameters and coordinates.
      const auto rMinScaled =
          ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE));
      const auto deltaRScaled =
          ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE));
      auto referenceScaled = ClipperLib::IntPoint{
          ClipperLib::cInt(std::round(reference.get<0>() * CLIPPER_SCALE)),
          ClipperLib::cInt(std::round(reference.get<1>() * CLIPPER_SCALE))};

      // Generate circle sectors.
      auto rScaled = rMinScaled;
      const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value()));
      vector<ClipperLib::Path> sectors(nTran, ClipperLib::Path());
      const auto nSectors =
          long(std::round(((alpha2 - alpha1) / deltaAlpha).value()));
      //#ifdef DEBUG_CIRCULAR_SURVEY
      //      qCDebug(CircularGeneratorLog) << "circularTransects(): sector
      //      parameres:"; qCDebug(CircularGeneratorLog) << "alpha1: " <<
      //      to_string(snake::Degree(alpha1)).c_str();
      //      qCDebug(CircularGeneratorLog) << "alpha2:
      //      "
      //      << to_string(snake::Degree(alpha2)).c_str();
      //      qCDebug(CircularGeneratorLog) << "n: "
      //      << to_string((alpha2 - alpha1) / deltaAlpha).c_str();
      //      qCDebug(CircularGeneratorLog)
      //      << "nSectors: " << nSectors; qCDebug(CircularGeneratorLog) <<
      //      "rMin: " << to_string(rMin).c_str();
      //      qCDebug(CircularGeneratorLog)
      //      << "rMax: " << to_string(rMax).c_str();
      //      qCDebug(CircularGeneratorLog) << "nTran: " << nTran;
      //#endif
      using ClipperCircle =
          GenericCircle<ClipperLib::cInt, ClipperLib::IntPoint>;
      for (auto &sector : sectors) {
        ClipperCircle circle(rScaled, referenceScaled);
        approximate(circle, nSectors, sector);
        rScaled += deltaRScaled;
      }
      // Clip sectors to polygonENU.
      ClipperLib::Path polygonClipper;
      snake::FPolygon shrinked;
      snake::offsetPolygon(polygon, shrinked, -0.3);
      auto &outer = shrinked.outer();
      polygonClipper.reserve(outer.size());
      for (auto it = outer.begin(); it < outer.end() - 1; ++it) {
        auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE));
        auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE));
        polygonClipper.push_back(ClipperLib::IntPoint{x, y});
      }
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(sectors, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree transectsClipper;
      clipper.Execute(ClipperLib::ctIntersection, transectsClipper,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

      // Subtract holes.
      if (tiles.size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &tile : tiles) {
          ClipperLib::Path path;
          for (const auto &v : tile.outer()) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(std::move(path));
        }

        clipper.Clear();
        for (const auto &child : transectsClipper.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        transectsClipper.Clear();
        clipper.Execute(ClipperLib::ctDifference, transectsClipper,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      }

      // Extract transects from  PolyTree and convert them to
      // BoostLineString
      for (const auto &child : transectsClipper.Childs) {
        snake::FLineString transect;
        transect.reserve(child->Contour.size());
        for (const auto &vertex : child->Contour) {
          auto x = static_cast<double>(vertex.X) / CLIPPER_SCALE;
          auto y = static_cast<double>(vertex.Y) / CLIPPER_SCALE;
          transect.push_back(snake::FPoint(x, y));
        }
        transects.push_back(transect);
      }

      // Join sectors which where slit due to clipping.
      const double th = 0.01;
      for (auto ito = transects.begin(); ito < transects.end(); ++ito) {
        for (auto iti = ito + 1; iti < transects.end(); ++iti) {
          auto dist1 = bg::distance(ito->front(), iti->front());
          if (dist1 < th) {
            snake::FLineString temp;
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist2 = bg::distance(ito->front(), iti->back());
          if (dist2 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), iti->begin(), iti->end());
            temp.insert(temp.end(), ito->begin(), ito->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist3 = bg::distance(ito->back(), iti->front());
          if (dist3 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), ito->begin(), ito->end());
            temp.insert(temp.end(), iti->begin(), iti->end());
            *ito = temp;
            transects.erase(iti);
            break;
          }
          auto dist4 = bg::distance(ito->back(), iti->back());
          if (dist4 < th) {
            snake::FLineString temp;
            temp.insert(temp.end(), ito->begin(), ito->end());
            for (auto it = iti->end() - 1; it >= iti->begin(); --it) {
              temp.push_back(*it);
            }
            *ito = temp;
            transects.erase(iti);
            break;
          }
        }
      }

      // Remove short transects
      for (auto it = transects.begin(); it < transects.end();) {
        if (bg::length(*it) < minLength.value()) {
          it = transects.erase(it);
        } else {
          ++it;
        }
      }

      qCDebug(CircularGeneratorLog)
          << "circularTransects(): transect gen. time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
      return true;
    }
  }
  return false;
}

} // namespace routing