CompleteOrthogonalDecomposition.h 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H

namespace Eigen {

namespace internal {
template <typename _MatrixType>
struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
    : traits<_MatrixType> {
  enum { Flags = 0 };
};

}  // end namespace internal

/** \ingroup QR_Module
  *
  * \class CompleteOrthogonalDecomposition
  *
  * \brief Complete orthogonal decomposition (COD) of a matrix.
  *
  * \param MatrixType the type of the matrix of which we are computing the COD.
  *
  * This class performs a rank-revealing complete orthogonal decomposition of a
  * matrix  \b A into matrices \b P, \b Q, \b T, and \b Z such that
  * \f[
  *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
  *                     \begin{bmatrix} \mathbf{T} &  \mathbf{0} \\
  *                                     \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
  * \f]
  * by using Householder transformations. Here, \b P is a permutation matrix,
  * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
  * size rank-by-rank. \b A may be rank deficient.
  *
  * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
  * 
  * \sa MatrixBase::completeOrthogonalDecomposition()
  */
template <typename _MatrixType>
class CompleteOrthogonalDecomposition {
 public:
  typedef _MatrixType MatrixType;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
  };
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::StorageIndex StorageIndex;
  typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
  typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
      PermutationType;
  typedef typename internal::plain_row_type<MatrixType, Index>::type
      IntRowVectorType;
  typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
  typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
      RealRowVectorType;
  typedef HouseholderSequence<
      MatrixType, typename internal::remove_all<
                      typename HCoeffsType::ConjugateReturnType>::type>
      HouseholderSequenceType;
  typedef typename MatrixType::PlainObject PlainObject;

 private:
  typedef typename PermutationType::Index PermIndexType;

 public:
  /**
   * \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via
   * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
   */
  CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}

  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem \a size.
   * \sa CompleteOrthogonalDecomposition()
   */
  CompleteOrthogonalDecomposition(Index rows, Index cols)
      : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}

  /** \brief Constructs a complete orthogonal decomposition from a given
   * matrix.
   *
   * This constructor computes the complete orthogonal decomposition of the
   * matrix \a matrix by calling the method compute(). The default
   * threshold for rank determination will be used. It is a short cut for:
   *
   * \code
   * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
   *                                                 matrix.cols());
   * cod.setThreshold(Default);
   * cod.compute(matrix);
   * \endcode
   *
   * \sa compute()
   */
  template <typename InputType>
  explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
      : m_cpqr(matrix.rows(), matrix.cols()),
        m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
        m_temp(matrix.cols())
  {
    compute(matrix.derived());
  }

  /** \brief Constructs a complete orthogonal decomposition from a given matrix
    *
    * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
    *
    * \sa CompleteOrthogonalDecomposition(const EigenBase&)
    */
  template<typename InputType>
  explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
    : m_cpqr(matrix.derived()),
      m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
      m_temp(matrix.cols())
  {
    computeInPlace();
  }


  /** This method computes the minimum-norm solution X to a least squares
   * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
   * which \c *this is the complete orthogonal decomposition.
   *
   * \param b the right-hand sides of the problem to solve.
   *
   * \returns a solution.
   *
   */
  template <typename Rhs>
  inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
      const MatrixBase<Rhs>& b) const {
    eigen_assert(m_cpqr.m_isInitialized &&
                 "CompleteOrthogonalDecomposition is not initialized.");
    return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
  }

  HouseholderSequenceType householderQ(void) const;
  HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }

  /** \returns the matrix \b Z.
   */
  MatrixType matrixZ() const {
    MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
    applyZAdjointOnTheLeftInPlace(Z);
    return Z.adjoint();
  }

  /** \returns a reference to the matrix where the complete orthogonal
   * decomposition is stored
   */
  const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }

  /** \returns a reference to the matrix where the complete orthogonal
   * decomposition is stored.
   * \warning The strict lower part and \code cols() - rank() \endcode right
   * columns of this matrix contains internal values.
   * Only the upper triangular part should be referenced. To get it, use
   * \code matrixT().template triangularView<Upper>() \endcode
   * For rank-deficient matrices, use
   * \code
   * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
   * \endcode
   */
  const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }

  template <typename InputType>
  CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
    // Compute the column pivoted QR factorization A P = Q R.
    m_cpqr.compute(matrix);
    computeInPlace();
    return *this;
  }

  /** \returns a const reference to the column permutation matrix */
  const PermutationType& colsPermutation() const {
    return m_cpqr.colsPermutation();
  }

  /** \returns the absolute value of the determinant of the matrix of which
   * *this is the complete orthogonal decomposition. It has only linear
   * complexity (that is, O(n) where n is the dimension of the square matrix)
   * as the complete orthogonal decomposition has already been computed.
   *
   * \note This is only for square matrices.
   *
   * \warning a determinant can be very big or small, so for matrices
   * of large enough dimension, there is a risk of overflow/underflow.
   * One way to work around that is to use logAbsDeterminant() instead.
   *
   * \sa logAbsDeterminant(), MatrixBase::determinant()
   */
  typename MatrixType::RealScalar absDeterminant() const;

  /** \returns the natural log of the absolute value of the determinant of the
   * matrix of which *this is the complete orthogonal decomposition. It has
   * only linear complexity (that is, O(n) where n is the dimension of the
   * square matrix) as the complete orthogonal decomposition has already been
   * computed.
   *
   * \note This is only for square matrices.
   *
   * \note This method is useful to work around the risk of overflow/underflow
   * that's inherent to determinant computation.
   *
   * \sa absDeterminant(), MatrixBase::determinant()
   */
  typename MatrixType::RealScalar logAbsDeterminant() const;

  /** \returns the rank of the matrix of which *this is the complete orthogonal
   * decomposition.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline Index rank() const { return m_cpqr.rank(); }

  /** \returns the dimension of the kernel of the matrix of which *this is the
   * complete orthogonal decomposition.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }

  /** \returns true if the matrix of which *this is the decomposition represents
   * an injective linear map, i.e. has trivial kernel; false otherwise.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isInjective() const { return m_cpqr.isInjective(); }

  /** \returns true if the matrix of which *this is the decomposition represents
   * a surjective linear map; false otherwise.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isSurjective() const { return m_cpqr.isSurjective(); }

  /** \returns true if the matrix of which *this is the complete orthogonal
   * decomposition is invertible.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isInvertible() const { return m_cpqr.isInvertible(); }

  /** \returns the pseudo-inverse of the matrix of which *this is the complete
   * orthogonal decomposition.
   * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems.
   * It is more efficient and numerically stable to call \c this->solve(rhs).
   */
  inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const
  {
    return Inverse<CompleteOrthogonalDecomposition>(*this);
  }

  inline Index rows() const { return m_cpqr.rows(); }
  inline Index cols() const { return m_cpqr.cols(); }

  /** \returns a const reference to the vector of Householder coefficients used
   * to represent the factor \c Q.
   *
   * For advanced uses only.
   */
  inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }

  /** \returns a const reference to the vector of Householder coefficients
   * used to represent the factor \c Z.
   *
   * For advanced uses only.
   */
  const HCoeffsType& zCoeffs() const { return m_zCoeffs; }

  /** Allows to prescribe a threshold to be used by certain methods, such as
   * rank(), who need to determine when pivots are to be considered nonzero.
   * Most be called before calling compute().
   *
   * When it needs to get the threshold value, Eigen calls threshold(). By
   * default, this uses a formula to automatically determine a reasonable
   * threshold. Once you have called the present method
   * setThreshold(const RealScalar&), your value is used instead.
   *
   * \param threshold The new value to use as the threshold.
   *
   * A pivot will be considered nonzero if its absolute value is strictly
   * greater than
   *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
   * where maxpivot is the biggest pivot.
   *
   * If you want to come back to the default behavior, call
   * setThreshold(Default_t)
   */
  CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
    m_cpqr.setThreshold(threshold);
    return *this;
  }

  /** Allows to come back to the default behavior, letting Eigen use its default
   * formula for determining the threshold.
   *
   * You should pass the special object Eigen::Default as parameter here.
   * \code qr.setThreshold(Eigen::Default); \endcode
   *
   * See the documentation of setThreshold(const RealScalar&).
   */
  CompleteOrthogonalDecomposition& setThreshold(Default_t) {
    m_cpqr.setThreshold(Default);
    return *this;
  }

  /** Returns the threshold that will be used by certain methods such as rank().
   *
   * See the documentation of setThreshold(const RealScalar&).
   */
  RealScalar threshold() const { return m_cpqr.threshold(); }

  /** \returns the number of nonzero pivots in the complete orthogonal
   * decomposition. Here nonzero is meant in the exact sense, not in a
   * fuzzy sense. So that notion isn't really intrinsically interesting,
   * but it is still useful when implementing algorithms.
   *
   * \sa rank()
   */
  inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }

  /** \returns the absolute value of the biggest pivot, i.e. the biggest
   *          diagonal coefficient of R.
   */
  inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }

  /** \brief Reports whether the complete orthogonal decomposition was
   * succesful.
   *
   * \note This function always returns \c Success. It is provided for
   * compatibility
   * with other factorization routines.
   * \returns \c Success
   */
  ComputationInfo info() const {
    eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
    return Success;
  }

#ifndef EIGEN_PARSED_BY_DOXYGEN
  template <typename RhsType, typename DstType>
  EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const;
#endif

 protected:
  static void check_template_parameters() {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
  }

  void computeInPlace();

  /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
   */
  template <typename Rhs>
  void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;

  ColPivHouseholderQR<MatrixType> m_cpqr;
  HCoeffsType m_zCoeffs;
  RowVectorType m_temp;
};

template <typename MatrixType>
typename MatrixType::RealScalar
CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
  return m_cpqr.absDeterminant();
}

template <typename MatrixType>
typename MatrixType::RealScalar
CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
  return m_cpqr.logAbsDeterminant();
}

/** Performs the complete orthogonal decomposition of the given matrix \a
 * matrix. The result of the factorization is stored into \c *this, and a
 * reference to \c *this is returned.
 *
 * \sa class CompleteOrthogonalDecomposition,
 * CompleteOrthogonalDecomposition(const MatrixType&)
 */
template <typename MatrixType>
void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
{
  check_template_parameters();

  // the column permutation is stored as int indices, so just to be sure:
  eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());

  const Index rank = m_cpqr.rank();
  const Index cols = m_cpqr.cols();
  const Index rows = m_cpqr.rows();
  m_zCoeffs.resize((std::min)(rows, cols));
  m_temp.resize(cols);

  if (rank < cols) {
    // We have reduced the (permuted) matrix to the form
    //   [R11 R12]
    //   [ 0  R22]
    // where R11 is r-by-r (r = rank) upper triangular, R12 is
    // r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
    // We now compute the complete orthogonal decomposition by applying
    // Householder transformations from the right to the upper trapezoidal
    // matrix X = [R11 R12] to zero out R12 and obtain the factorization
    // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
    // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
    // We store the data representing Z in R12 and m_zCoeffs.
    for (Index k = rank - 1; k >= 0; --k) {
      if (k != rank - 1) {
        // Given the API for Householder reflectors, it is more convenient if
        // we swap the leading parts of columns k and r-1 (zero-based) to form
        // the matrix X_k = [X(0:k, k), X(0:k, r:n)]
        m_cpqr.m_qr.col(k).head(k + 1).swap(
            m_cpqr.m_qr.col(rank - 1).head(k + 1));
      }
      // Construct Householder reflector Z(k) to zero out the last row of X_k,
      // i.e. choose Z(k) such that
      // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
      RealScalar beta;
      m_cpqr.m_qr.row(k)
          .tail(cols - rank + 1)
          .makeHouseholderInPlace(m_zCoeffs(k), beta);
      m_cpqr.m_qr(k, rank - 1) = beta;
      if (k > 0) {
        // Apply Z(k) to the first k rows of X_k
        m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
            .applyHouseholderOnTheRight(
                m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
                &m_temp(0));
      }
      if (k != rank - 1) {
        // Swap X(0:k,k) back to its proper location.
        m_cpqr.m_qr.col(k).head(k + 1).swap(
            m_cpqr.m_qr.col(rank - 1).head(k + 1));
      }
    }
  }
}

template <typename MatrixType>
template <typename Rhs>
void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
    Rhs& rhs) const {
  const Index cols = this->cols();
  const Index nrhs = rhs.cols();
  const Index rank = this->rank();
  Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
  for (Index k = 0; k < rank; ++k) {
    if (k != rank - 1) {
      rhs.row(k).swap(rhs.row(rank - 1));
    }
    rhs.middleRows(rank - 1, cols - rank + 1)
        .applyHouseholderOnTheLeft(
            matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
            &temp(0));
    if (k != rank - 1) {
      rhs.row(k).swap(rhs.row(rank - 1));
    }
  }
}

#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename _MatrixType>
template <typename RhsType, typename DstType>
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
    const RhsType& rhs, DstType& dst) const {
  eigen_assert(rhs.rows() == this->rows());

  const Index rank = this->rank();
  if (rank == 0) {
    dst.setZero();
    return;
  }

  // Compute c = Q^* * rhs
  // Note that the matrix Q = H_0^* H_1^*... so its inverse is
  // Q^* = (H_0 H_1 ...)^T
  typename RhsType::PlainObject c(rhs);
  c.applyOnTheLeft(
      householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());

  // Solve T z = c(1:rank, :)
  dst.topRows(rank) = matrixT()
                          .topLeftCorner(rank, rank)
                          .template triangularView<Upper>()
                          .solve(c.topRows(rank));

  const Index cols = this->cols();
  if (rank < cols) {
    // Compute y = Z^* * [ z ]
    //                   [ 0 ]
    dst.bottomRows(cols - rank).setZero();
    applyZAdjointOnTheLeftInPlace(dst);
  }

  // Undo permutation to get x = P^{-1} * y.
  dst = colsPermutation() * dst;
}
#endif

namespace internal {

template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense>
{
  typedef CompleteOrthogonalDecomposition<MatrixType> CodType;
  typedef Inverse<CodType> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &)
  {
    dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows()));
  }
};

} // end namespace internal

/** \returns the matrix Q as a sequence of householder transformations */
template <typename MatrixType>
typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
  return m_cpqr.householderQ();
}

/** \return the complete orthogonal decomposition of \c *this.
  *
  * \sa class CompleteOrthogonalDecomposition
  */
template <typename Derived>
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::completeOrthogonalDecomposition() const {
  return CompleteOrthogonalDecomposition<PlainObject>(eval());
}

}  // end namespace Eigen

#endif  // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H