CompressedStorage.h 7.1 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COMPRESSED_STORAGE_H
#define EIGEN_COMPRESSED_STORAGE_H

/** Stores a sparse set of values as a list of values and a list of indices.
  *
  */
template<typename _Scalar,typename _Index>
class CompressedStorage
{
  public:

    typedef _Scalar Scalar;
    typedef _Index Index;

  protected:

    typedef typename NumTraits<Scalar>::Real RealScalar;

  public:

    CompressedStorage()
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {}

    CompressedStorage(size_t size)
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {
      resize(size);
    }

    CompressedStorage(const CompressedStorage& other)
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {
      *this = other;
    }

    CompressedStorage& operator=(const CompressedStorage& other)
    {
      resize(other.size());
      memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
      memcpy(m_indices, other.m_indices, m_size * sizeof(Index));
      return *this;
    }

    void swap(CompressedStorage& other)
    {
      std::swap(m_values, other.m_values);
      std::swap(m_indices, other.m_indices);
      std::swap(m_size, other.m_size);
      std::swap(m_allocatedSize, other.m_allocatedSize);
    }

    ~CompressedStorage()
    {
      delete[] m_values;
      delete[] m_indices;
    }

    void reserve(size_t size)
    {
      size_t newAllocatedSize = m_size + size;
      if (newAllocatedSize > m_allocatedSize)
        reallocate(newAllocatedSize);
    }

    void squeeze()
    {
      if (m_allocatedSize>m_size)
        reallocate(m_size);
    }

    void resize(size_t size, float reserveSizeFactor = 0)
    {
      if (m_allocatedSize<size)
        reallocate(size + size_t(reserveSizeFactor*size));
      m_size = size;
    }

    void append(const Scalar& v, Index i)
    {
      Index id = static_cast<Index>(m_size);
      resize(m_size+1, 1);
      m_values[id] = v;
      m_indices[id] = i;
    }

    inline size_t size() const { return m_size; }
    inline size_t allocatedSize() const { return m_allocatedSize; }
    inline void clear() { m_size = 0; }

    inline Scalar& value(size_t i) { return m_values[i]; }
    inline const Scalar& value(size_t i) const { return m_values[i]; }

    inline Index& index(size_t i) { return m_indices[i]; }
    inline const Index& index(size_t i) const { return m_indices[i]; }

    static CompressedStorage Map(Index* indices, Scalar* values, size_t size)
    {
      CompressedStorage res;
      res.m_indices = indices;
      res.m_values = values;
      res.m_allocatedSize = res.m_size = size;
      return res;
    }

    /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
    inline Index searchLowerIndex(Index key) const
    {
      return searchLowerIndex(0, m_size, key);
    }

    /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
    inline Index searchLowerIndex(size_t start, size_t end, Index key) const
    {
      while(end>start)
      {
        size_t mid = (end+start)>>1;
        if (m_indices[mid]<key)
          start = mid+1;
        else
          end = mid;
      }
      return static_cast<Index>(start);
    }

    /** \returns the stored value at index \a key
      * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
    inline Scalar at(Index key, Scalar defaultValue = Scalar(0)) const
    {
      if (m_size==0)
        return defaultValue;
      else if (key==m_indices[m_size-1])
        return m_values[m_size-1];
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)
      const size_t id = searchLowerIndex(0,m_size-1,key);
      return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    }

    /** Like at(), but the search is performed in the range [start,end) */
    inline Scalar atInRange(size_t start, size_t end, Index key, Scalar defaultValue = Scalar(0)) const
    {
      if (start>=end)
        return Scalar(0);
      else if (end>start && key==m_indices[end-1])
        return m_values[end-1];
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)
      const size_t id = searchLowerIndex(start,end-1,key);
      return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    }

    /** \returns a reference to the value at index \a key
      * If the value does not exist, then the value \a defaultValue is inserted
      * such that the keys are sorted. */
    inline Scalar& atWithInsertion(Index key, Scalar defaultValue = Scalar(0))
    {
      size_t id = searchLowerIndex(0,m_size,key);
      if (id>=m_size || m_indices[id]!=key)
      {
        resize(m_size+1,1);
        for (size_t j=m_size-1; j>id; --j)
        {
          m_indices[j] = m_indices[j-1];
          m_values[j] = m_values[j-1];
        }
        m_indices[id] = key;
        m_values[id] = defaultValue;
      }
      return m_values[id];
    }

    void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      size_t k = 0;
      size_t n = size();
      for (size_t i=0; i<n; ++i)
      {
        if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
        {
          value(k) = value(i);
          index(k) = index(i);
          ++k;
        }
      }
      resize(k,0);
    }

  protected:

    inline void reallocate(size_t size)
    {
      Scalar* newValues  = new Scalar[size];
      Index* newIndices = new Index[size];
      size_t copySize = std::min(size, m_size);
      // copy
      memcpy(newValues,  m_values,  copySize * sizeof(Scalar));
      memcpy(newIndices, m_indices, copySize * sizeof(Index));
      // delete old stuff
      delete[] m_values;
      delete[] m_indices;
      m_values = newValues;
      m_indices = newIndices;
      m_allocatedSize = size;
    }

  protected:
    Scalar* m_values;
    Index* m_indices;
    size_t m_size;
    size_t m_allocatedSize;

};

#endif // EIGEN_COMPRESSED_STORAGE_H