elf_reader.cc 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
// Copyright 2005 Google Inc. All Rights Reserved.
// Author: chatham@google.com (Andrew Chatham)
// Author: satorux@google.com (Satoru Takabayashi)
//
// Code for reading in ELF files.
//
// For information on the ELF format, see
// http://www.x86.org/ftp/manuals/tools/elf.pdf
//
// I also liked:
// http://www.caldera.com/developers/gabi/1998-04-29/contents.html
//
// A note about types: When dealing with the file format, we use types
// like Elf32_Word, but in the public interfaces we treat all
// addresses as uint64. As a result, we should be able to symbolize
// 64-bit binaries from a 32-bit process (which we don't do,
// anyway). size_t should therefore be avoided, except where required
// by things like mmap().
//
// Although most of this code can deal with arbitrary ELF files of
// either word size, the public ElfReader interface only examines
// files loaded into the current address space, which must all match
// __WORDSIZE. This code cannot handle ELF files with a non-native
// byte ordering.
//
// TODO(chatham): It would be nice if we could accomplish this task
// without using malloc(), so we could use it as the process is dying.

#ifndef _GNU_SOURCE
#define _GNU_SOURCE  // needed for pread()
#endif

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>

#include <algorithm>
#include <map>
#include <string>
#include <vector>
// TODO(saugustine): Add support for compressed debug.
// Also need to add configure tests for zlib.
//#include "zlib.h"

#include "third_party/musl/include/elf.h"
#include "elf_reader.h"
#include "common/using_std_string.h"

// EM_AARCH64 is not defined by elf.h of GRTE v3 on x86.
// TODO(dougkwan): Remove this when v17 is retired.
#if !defined(EM_AARCH64)
#define EM_AARCH64      183             /* ARM AARCH64 */
#endif

// Map Linux macros to their Apple equivalents.
#if __APPLE__
#ifndef __LITTLE_ENDIAN
#define __LITTLE_ENDIAN __ORDER_LITTLE_ENDIAN__
#endif  // __LITTLE_ENDIAN
#ifndef __BIG_ENDIAN
#define __BIG_ENDIAN __ORDER_BIG_ENDIAN__
#endif  // __BIG_ENDIAN
#ifndef __BYTE_ORDER
#define __BYTE_ORDER __BYTE_ORDER__
#endif  // __BYTE_ORDER
#endif  // __APPLE__

// TODO(dthomson): Can be removed once all Java code is using the Google3
// launcher. We need to avoid processing PLT functions as it causes memory
// fragmentation in malloc, which is fixed in tcmalloc - and if the Google3
// launcher is used the JVM will then use tcmalloc. b/13735638
//DEFINE_bool(elfreader_process_dynsyms, true,
//            "Activate PLT function processing");

using std::vector;

namespace {

// The lowest bit of an ARM symbol value is used to indicate a Thumb address.
const int kARMThumbBitOffset = 0;

// Converts an ARM Thumb symbol value to a true aligned address value.
template <typename T>
T AdjustARMThumbSymbolValue(const T& symbol_table_value) {
  return symbol_table_value & ~(1 << kARMThumbBitOffset);
}

// Names of PLT-related sections.
const char kElfPLTRelSectionName[] = ".rel.plt";      // Use Rel struct.
const char kElfPLTRelaSectionName[] = ".rela.plt";    // Use Rela struct.
const char kElfPLTSectionName[] = ".plt";
const char kElfDynSymSectionName[] = ".dynsym";

const int kX86PLTCodeSize = 0x10;  // Size of one x86 PLT function in bytes.
const int kARMPLTCodeSize = 0xc;
const int kAARCH64PLTCodeSize = 0x10;

const int kX86PLT0Size = 0x10;  // Size of the special PLT0 entry.
const int kARMPLT0Size = 0x14;
const int kAARCH64PLT0Size = 0x20;

// Suffix for PLT functions when it needs to be explicitly identified as such.
const char kPLTFunctionSuffix[] = "@plt";

}  // namespace

namespace dwarf2reader {

template <class ElfArch> class ElfReaderImpl;

// 32-bit and 64-bit ELF files are processed exactly the same, except
// for various field sizes. Elf32 and Elf64 encompass all of the
// differences between the two formats, and all format-specific code
// in this file is templated on one of them.
class Elf32 {
 public:
  typedef Elf32_Ehdr Ehdr;
  typedef Elf32_Shdr Shdr;
  typedef Elf32_Phdr Phdr;
  typedef Elf32_Word Word;
  typedef Elf32_Sym Sym;
  typedef Elf32_Rel Rel;
  typedef Elf32_Rela Rela;

  // What should be in the EI_CLASS header.
  static const int kElfClass = ELFCLASS32;

  // Given a symbol pointer, return the binding type (eg STB_WEAK).
  static char Bind(const Elf32_Sym *sym) {
    return ELF32_ST_BIND(sym->st_info);
  }
  // Given a symbol pointer, return the symbol type (eg STT_FUNC).
  static char Type(const Elf32_Sym *sym) {
    return ELF32_ST_TYPE(sym->st_info);
  }

  // Extract the symbol index from the r_info field of a relocation.
  static int r_sym(const Elf32_Word r_info) {
    return ELF32_R_SYM(r_info);
  }
};


class Elf64 {
 public:
  typedef Elf64_Ehdr Ehdr;
  typedef Elf64_Shdr Shdr;
  typedef Elf64_Phdr Phdr;
  typedef Elf64_Word Word;
  typedef Elf64_Sym Sym;
  typedef Elf64_Rel Rel;
  typedef Elf64_Rela Rela;

  // What should be in the EI_CLASS header.
  static const int kElfClass = ELFCLASS64;

  static char Bind(const Elf64_Sym *sym) {
    return ELF64_ST_BIND(sym->st_info);
  }
  static char Type(const Elf64_Sym *sym) {
    return ELF64_ST_TYPE(sym->st_info);
  }
  static int r_sym(const Elf64_Xword r_info) {
    return ELF64_R_SYM(r_info);
  }
};


// ElfSectionReader mmaps a section of an ELF file ("section" is ELF
// terminology). The ElfReaderImpl object providing the section header
// must exist for the lifetime of this object.
//
// The motivation for mmaping individual sections of the file is that
// many Google executables are large enough when unstripped that we
// have to worry about running out of virtual address space.
//
// For compressed sections we have no choice but to allocate memory.
template<class ElfArch>
class ElfSectionReader {
 public:
  ElfSectionReader(const char *name, const string &path, int fd,
                   const typename ElfArch::Shdr &section_header)
      : contents_aligned_(NULL),
        contents_(NULL),
        header_(section_header) {
    // Back up to the beginning of the page we're interested in.
    const size_t additional = header_.sh_offset % getpagesize();
    const size_t offset_aligned = header_.sh_offset - additional;
    section_size_ = header_.sh_size;
    size_aligned_ = section_size_ + additional;
    // If the section has been stripped or is empty, do not attempt
    // to process its contents.
    if (header_.sh_type == SHT_NOBITS || header_.sh_size == 0)
      return;
    contents_aligned_ = mmap(NULL, size_aligned_, PROT_READ, MAP_SHARED,
                             fd, offset_aligned);
    // Set where the offset really should begin.
    contents_ = reinterpret_cast<char *>(contents_aligned_) +
                (header_.sh_offset - offset_aligned);

    // Check for and handle any compressed contents.
    //if (strncmp(name, ".zdebug_", strlen(".zdebug_")) == 0)
    //  DecompressZlibContents();
    // TODO(saugustine): Add support for proposed elf-section flag
    // "SHF_COMPRESS".
  }

  ~ElfSectionReader() {
    if (contents_aligned_ != NULL)
      munmap(contents_aligned_, size_aligned_);
    else
      delete[] contents_;
  }

  // Return the section header for this section.
  typename ElfArch::Shdr const &header() const { return header_; }

  // Return memory at the given offset within this section.
  const char *GetOffset(typename ElfArch::Word bytes) const {
    return contents_ + bytes;
  }

  const char *contents() const { return contents_; }
  size_t section_size() const { return section_size_; }

 private:
  // page-aligned file contents
  void *contents_aligned_;
  // contents as usable by the client. For non-compressed sections,
  // pointer within contents_aligned_ to where the section data
  // begins; for compressed sections, pointer to the decompressed
  // data.
  char *contents_;
  // size of contents_aligned_
  size_t size_aligned_;
  // size of contents.
  size_t section_size_;
  const typename ElfArch::Shdr header_;
};

// An iterator over symbols in a given section. It handles walking
// through the entries in the specified section and mapping symbol
// entries to their names in the appropriate string table (in
// another section).
template<class ElfArch>
class SymbolIterator {
 public:
  SymbolIterator(ElfReaderImpl<ElfArch> *reader,
                 typename ElfArch::Word section_type)
      : symbol_section_(reader->GetSectionByType(section_type)),
        string_section_(NULL),
        num_symbols_in_section_(0),
        symbol_within_section_(0) {

    // If this section type doesn't exist, leave
    // num_symbols_in_section_ as zero, so this iterator is already
    // done().
    if (symbol_section_ != NULL) {
      num_symbols_in_section_ = symbol_section_->header().sh_size /
                                symbol_section_->header().sh_entsize;

      // Symbol sections have sh_link set to the section number of
      // the string section containing the symbol names.
      string_section_ = reader->GetSection(symbol_section_->header().sh_link);
    }
  }

  // Return true iff we have passed all symbols in this section.
  bool done() const {
    return symbol_within_section_ >= num_symbols_in_section_;
  }

  // Advance to the next symbol in this section.
  // REQUIRES: !done()
  void Next() { ++symbol_within_section_; }

  // Return a pointer to the current symbol.
  // REQUIRES: !done()
  const typename ElfArch::Sym *GetSymbol() const {
    return reinterpret_cast<const typename ElfArch::Sym*>(
        symbol_section_->GetOffset(symbol_within_section_ *
                                   symbol_section_->header().sh_entsize));
  }

  // Return the name of the current symbol, NULL if it has none.
  // REQUIRES: !done()
  const char *GetSymbolName() const {
    int name_offset = GetSymbol()->st_name;
    if (name_offset == 0)
      return NULL;
    return string_section_->GetOffset(name_offset);
  }

  int GetCurrentSymbolIndex() const {
    return symbol_within_section_;
  }

 private:
  const ElfSectionReader<ElfArch> *const symbol_section_;
  const ElfSectionReader<ElfArch> *string_section_;
  int num_symbols_in_section_;
  int symbol_within_section_;
};


// Copied from strings/strutil.h.  Per chatham,
// this library should not depend on strings.

static inline bool MyHasSuffixString(const string& str, const string& suffix) {
  int len = str.length();
  int suflen = suffix.length();
  return (suflen <= len) && (str.compare(len-suflen, suflen, suffix) == 0);
}


// ElfReader loads an ELF binary and can provide information about its
// contents. It is most useful for matching addresses to function
// names. It does not understand debugging formats (eg dwarf2), so it
// can't print line numbers. It takes a path to an elf file and a
// readable file descriptor for that file, which it does not assume
// ownership of.
template<class ElfArch>
class ElfReaderImpl {
 public:
  explicit ElfReaderImpl(const string &path, int fd)
      : path_(path),
        fd_(fd),
        section_headers_(NULL),
        program_headers_(NULL),
        opd_section_(NULL),
        base_for_text_(0),
        plts_supported_(false),
        plt_code_size_(0),
        plt0_size_(0),
        visited_relocation_entries_(false) {
    string error;
    is_dwp_ = MyHasSuffixString(path, ".dwp");
    ParseHeaders(fd, path);
    // Currently we need some extra information for PowerPC64 binaries
    // including a way to read the .opd section for function descriptors and a
    // way to find the linked base for function symbols.
    if (header_.e_machine == EM_PPC64) {
      // "opd_section_" must always be checked for NULL before use.
      opd_section_ = GetSectionInfoByName(".opd", &opd_info_);
      for (unsigned int k = 0u; k < GetNumSections(); ++k) {
        const char *name = GetSectionName(section_headers_[k].sh_name);
        if (strncmp(name, ".text", strlen(".text")) == 0) {
          base_for_text_ =
              section_headers_[k].sh_addr - section_headers_[k].sh_offset;
          break;
        }
      }
    }
    // Turn on PLTs.
    if (header_.e_machine == EM_386 || header_.e_machine == EM_X86_64) {
      plt_code_size_ = kX86PLTCodeSize;
      plt0_size_ = kX86PLT0Size;
      plts_supported_ = true;
    } else if (header_.e_machine == EM_ARM) {
      plt_code_size_ = kARMPLTCodeSize;
      plt0_size_ = kARMPLT0Size;
      plts_supported_ = true;
    } else if (header_.e_machine == EM_AARCH64) {
      plt_code_size_ = kAARCH64PLTCodeSize;
      plt0_size_ = kAARCH64PLT0Size;
      plts_supported_ = true;
    }
  }

  ~ElfReaderImpl() {
    for (unsigned int i = 0u; i < sections_.size(); ++i)
      delete sections_[i];
    delete [] section_headers_;
    delete [] program_headers_;
  }

  // Examine the headers of the file and return whether the file looks
  // like an ELF file for this architecture. Takes an already-open
  // file descriptor for the candidate file, reading in the prologue
  // to see if the ELF file appears to match the current
  // architecture. If error is non-NULL, it will be set with a reason
  // in case of failure.
  static bool IsArchElfFile(int fd, string *error) {
    unsigned char header[EI_NIDENT];
    if (pread(fd, header, sizeof(header), 0) != sizeof(header)) {
      if (error != NULL) *error = "Could not read header";
      return false;
    }

    if (memcmp(header, ELFMAG, SELFMAG) != 0) {
      if (error != NULL) *error = "Missing ELF magic";
      return false;
    }

    if (header[EI_CLASS] != ElfArch::kElfClass) {
      if (error != NULL) *error = "Different word size";
      return false;
    }

    int endian = 0;
    if (header[EI_DATA] == ELFDATA2LSB)
      endian = __LITTLE_ENDIAN;
    else if (header[EI_DATA] == ELFDATA2MSB)
      endian = __BIG_ENDIAN;
    if (endian != __BYTE_ORDER) {
      if (error != NULL) *error = "Different byte order";
      return false;
    }

    return true;
  }

  // Return true if we can use this symbol in Address-to-Symbol map.
  bool CanUseSymbol(const char *name, const typename ElfArch::Sym *sym) {
    // For now we only save FUNC and NOTYPE symbols. For now we just
    // care about functions, but some functions written in assembler
    // don't have a proper ELF type attached to them, so we store
    // NOTYPE symbols as well. The remaining significant type is
    // OBJECT (eg global variables), which represent about 25% of
    // the symbols in a typical google3 binary.
    if (ElfArch::Type(sym) != STT_FUNC &&
        ElfArch::Type(sym) != STT_NOTYPE) {
      return false;
    }

    // Target specific filtering.
    switch (header_.e_machine) {
    case EM_AARCH64:
    case EM_ARM:
      // Filter out '$x' special local symbols used by tools
      return name[0] != '$' || ElfArch::Bind(sym) != STB_LOCAL;
    case EM_X86_64:
      // Filter out read-only constants like .LC123.
      return name[0] != '.' || ElfArch::Bind(sym) != STB_LOCAL;
    default:
      return true;
    }
  }

  // Iterate over the symbols in a section, either SHT_DYNSYM or
  // SHT_SYMTAB. Add all symbols to the given SymbolMap.
  /*
  void GetSymbolPositions(SymbolMap *symbols,
                          typename ElfArch::Word section_type,
                          uint64 mem_offset,
                          uint64 file_offset) {
    // This map is used to filter out "nested" functions.
    // See comment below.
    AddrToSymMap addr_to_sym_map;
    for (SymbolIterator<ElfArch> it(this, section_type);
         !it.done(); it.Next()) {
      const char *name = it.GetSymbolName();
      if (name == NULL)
        continue;
      const typename ElfArch::Sym *sym = it.GetSymbol();
      if (CanUseSymbol(name, sym)) {
        const int sec = sym->st_shndx;

        // We don't support special section indices. The most common
        // is SHN_ABS, for absolute symbols used deep in the bowels of
        // glibc. Also ignore any undefined symbols.
        if (sec == SHN_UNDEF ||
            (sec >= SHN_LORESERVE && sec <= SHN_HIRESERVE)) {
          continue;
        }

        const typename ElfArch::Shdr& hdr = section_headers_[sec];

        // Adjust for difference between where we expected to mmap
        // this section, and where it was actually mmapped.
        const int64 expected_base = hdr.sh_addr - hdr.sh_offset;
        const int64 real_base = mem_offset - file_offset;
        const int64 adjust = real_base - expected_base;

        uint64 start = sym->st_value + adjust;

        // Adjust function symbols for PowerPC64 by dereferencing and adjusting
        // the function descriptor to get the function address.
        if (header_.e_machine == EM_PPC64 && ElfArch::Type(sym) == STT_FUNC) {
          const uint64 opd_addr =
              AdjustPPC64FunctionDescriptorSymbolValue(sym->st_value);
          // Only adjust the returned value if the function address was found.
          if (opd_addr != sym->st_value) {
            const int64 adjust_function_symbols =
                real_base - base_for_text_;
            start = opd_addr + adjust_function_symbols;
          }
        }

        addr_to_sym_map.push_back(std::make_pair(start, sym));
      }
    }
    std::sort(addr_to_sym_map.begin(), addr_to_sym_map.end(), &AddrToSymSorter);
    addr_to_sym_map.erase(std::unique(addr_to_sym_map.begin(),
                                      addr_to_sym_map.end(), &AddrToSymEquals),
                          addr_to_sym_map.end());

    // Squeeze out any "nested functions".
    // Nested functions are not allowed in C, but libc plays tricks.
    //
    // For example, here is disassembly of /lib64/tls/libc-2.3.5.so:
    //   0x00000000000aa380 <read+0>:             cmpl   $0x0,0x2781b9(%rip)
    //   0x00000000000aa387 <read+7>:             jne    0xaa39b <read+27>
    //   0x00000000000aa389 <__read_nocancel+0>:  mov    $0x0,%rax
    //   0x00000000000aa390 <__read_nocancel+7>:  syscall
    //   0x00000000000aa392 <__read_nocancel+9>:  cmp $0xfffffffffffff001,%rax
    //   0x00000000000aa398 <__read_nocancel+15>: jae    0xaa3ef <read+111>
    //   0x00000000000aa39a <__read_nocancel+17>: retq
    //   0x00000000000aa39b <read+27>:            sub    $0x28,%rsp
    //   0x00000000000aa39f <read+31>:            mov    %rdi,0x8(%rsp)
    //   ...
    // Without removing __read_nocancel, symbolizer will return NULL
    // given e.g. 0xaa39f (because the lower bound is __read_nocancel,
    // but 0xaa39f is beyond its end.
    if (addr_to_sym_map.empty()) {
      return;
    }
    const ElfSectionReader<ElfArch> *const symbol_section =
        this->GetSectionByType(section_type);
    const ElfSectionReader<ElfArch> *const string_section =
        this->GetSection(symbol_section->header().sh_link);

    typename AddrToSymMap::iterator curr = addr_to_sym_map.begin();
    // Always insert the first symbol.
    symbols->AddSymbol(string_section->GetOffset(curr->second->st_name),
                       curr->first, curr->second->st_size);
    typename AddrToSymMap::iterator prev = curr++;
    for (; curr != addr_to_sym_map.end(); ++curr) {
      const uint64 prev_addr = prev->first;
      const uint64 curr_addr = curr->first;
      const typename ElfArch::Sym *const prev_sym = prev->second;
      const typename ElfArch::Sym *const curr_sym = curr->second;
      if (prev_addr + prev_sym->st_size <= curr_addr ||
          // The next condition is true if two symbols overlap like this:
          //
          //   Previous symbol  |----------------------------|
          //   Current symbol     |-------------------------------|
          //
          // These symbols are not found in google3 codebase, but in
          // jdk1.6.0_01_gg1/jre/lib/i386/server/libjvm.so.
          //
          // 0619e040 00000046 t CardTableModRefBS::write_region_work()
          // 0619e070 00000046 t CardTableModRefBS::write_ref_array_work()
          //
          // We allow overlapped symbols rather than ignore these.
          // Due to the way SymbolMap::GetSymbolAtPosition() works,
          // lookup for any address in [curr_addr, curr_addr + its size)
          // (e.g. 0619e071) will produce the current symbol,
          // which is the desired outcome.
          prev_addr + prev_sym->st_size < curr_addr + curr_sym->st_size) {
        const char *name = string_section->GetOffset(curr_sym->st_name);
        symbols->AddSymbol(name, curr_addr, curr_sym->st_size);
        prev = curr;
      } else {
        // Current symbol is "nested" inside previous one like this:
        //
        //   Previous symbol  |----------------------------|
        //   Current symbol     |---------------------|
        //
        // This happens within glibc, e.g. __read_nocancel is nested
        // "inside" __read. Ignore "inner" symbol.
        //DCHECK_LE(curr_addr + curr_sym->st_size,
        //          prev_addr + prev_sym->st_size);
        ;
      }
    }
  }
*/

  void VisitSymbols(typename ElfArch::Word section_type,
                    ElfReader::SymbolSink *sink) {
    VisitSymbols(section_type, sink, -1, -1, false);
  }

  void VisitSymbols(typename ElfArch::Word section_type,
                    ElfReader::SymbolSink *sink,
                    int symbol_binding,
                    int symbol_type,
                    bool get_raw_symbol_values) {
    for (SymbolIterator<ElfArch> it(this, section_type);
         !it.done(); it.Next()) {
      const char *name = it.GetSymbolName();
      if (!name) continue;
      const typename ElfArch::Sym *sym = it.GetSymbol();
      if ((symbol_binding < 0 || ElfArch::Bind(sym) == symbol_binding) &&
          (symbol_type < 0 || ElfArch::Type(sym) == symbol_type)) {
        typename ElfArch::Sym symbol = *sym;
        // Add a PLT symbol in addition to the main undefined symbol.
        // Only do this for SHT_DYNSYM, because PLT symbols are dynamic.
        int symbol_index = it.GetCurrentSymbolIndex();
        // TODO(dthomson): Can be removed once all Java code is using the
        // Google3 launcher.
        if (section_type == SHT_DYNSYM &&
            static_cast<unsigned int>(symbol_index) < symbols_plt_offsets_.size() &&
            symbols_plt_offsets_[symbol_index] != 0) {
          string plt_name = string(name) + kPLTFunctionSuffix;
          if (plt_function_names_[symbol_index].empty()) {
            plt_function_names_[symbol_index] = plt_name;
          } else if (plt_function_names_[symbol_index] != plt_name) {
		;
          }
          sink->AddSymbol(plt_function_names_[symbol_index].c_str(),
                          symbols_plt_offsets_[it.GetCurrentSymbolIndex()],
                          plt_code_size_);
        }
        if (!get_raw_symbol_values)
          AdjustSymbolValue(&symbol);
        sink->AddSymbol(name, symbol.st_value, symbol.st_size);
      }
    }
  }

  void VisitRelocationEntries() {
    if (visited_relocation_entries_) {
      return;
    }
    visited_relocation_entries_ = true;

    if (!plts_supported_) {
      return;
    }
    // First determine if PLTs exist. If not, then there is nothing to do.
    ElfReader::SectionInfo plt_section_info;
    const char* plt_section =
        GetSectionInfoByName(kElfPLTSectionName, &plt_section_info);
    if (!plt_section) {
      return;
    }
    if (plt_section_info.size == 0) {
      return;
    }

    // The PLTs could be referenced by either a Rel or Rela (Rel with Addend)
    // section.
    ElfReader::SectionInfo rel_section_info;
    ElfReader::SectionInfo rela_section_info;
    const char* rel_section =
        GetSectionInfoByName(kElfPLTRelSectionName, &rel_section_info);
    const char* rela_section =
        GetSectionInfoByName(kElfPLTRelaSectionName, &rela_section_info);

    const typename ElfArch::Rel* rel =
        reinterpret_cast<const typename ElfArch::Rel*>(rel_section);
    const typename ElfArch::Rela* rela =
        reinterpret_cast<const typename ElfArch::Rela*>(rela_section);

    if (!rel_section && !rela_section) {
      return;
    }

    // Use either Rel or Rela section, depending on which one exists.
    size_t section_size = rel_section ? rel_section_info.size
                                      : rela_section_info.size;
    size_t entry_size = rel_section ? sizeof(typename ElfArch::Rel)
                                    : sizeof(typename ElfArch::Rela);

    // Determine the number of entries in the dynamic symbol table.
    ElfReader::SectionInfo dynsym_section_info;
    const char* dynsym_section =
        GetSectionInfoByName(kElfDynSymSectionName, &dynsym_section_info);
    // The dynsym section might not exist, or it might be empty. In either case
    // there is nothing to be done so return.
    if (!dynsym_section || dynsym_section_info.size == 0) {
      return;
    }
    size_t num_dynamic_symbols =
        dynsym_section_info.size / dynsym_section_info.entsize;
    symbols_plt_offsets_.resize(num_dynamic_symbols, 0);

    // TODO(dthomson): Can be removed once all Java code is using the
    // Google3 launcher.
    // Make storage room for PLT function name strings.
    plt_function_names_.resize(num_dynamic_symbols);

    for (size_t i = 0; i < section_size / entry_size; ++i) {
      // Determine symbol index from the |r_info| field.
      int sym_index = ElfArch::r_sym(rel_section ? rel[i].r_info
                                                 : rela[i].r_info);
      if (static_cast<unsigned int>(sym_index) >= symbols_plt_offsets_.size()) {
        continue;
      }
      symbols_plt_offsets_[sym_index] =
          plt_section_info.addr + plt0_size_ + i * plt_code_size_;
    }
  }

  // Return an ElfSectionReader for the first section of the given
  // type by iterating through all section headers. Returns NULL if
  // the section type is not found.
  const ElfSectionReader<ElfArch> *GetSectionByType(
      typename ElfArch::Word section_type) {
    for (unsigned int k = 0u; k < GetNumSections(); ++k) {
      if (section_headers_[k].sh_type == section_type) {
        return GetSection(k);
      }
    }
    return NULL;
  }

  // Return the name of section "shndx".  Returns NULL if the section
  // is not found.
  const char *GetSectionNameByIndex(int shndx) {
    return GetSectionName(section_headers_[shndx].sh_name);
  }

  // Return a pointer to section "shndx", and store the size in
  // "size".  Returns NULL if the section is not found.
  const char *GetSectionContentsByIndex(int shndx, size_t *size) {
    const ElfSectionReader<ElfArch> *section = GetSection(shndx);
    if (section != NULL) {
      *size = section->section_size();
      return section->contents();
    }
    return NULL;
  }

  // Return a pointer to the first section of the given name by
  // iterating through all section headers, and store the size in
  // "size".  Returns NULL if the section name is not found.
  const char *GetSectionContentsByName(const string &section_name,
                                       size_t *size) {
    for (unsigned int k = 0u; k < GetNumSections(); ++k) {
      // When searching for sections in a .dwp file, the sections
      // we're looking for will always be at the end of the section
      // table, so reverse the direction of iteration.
      int shndx = is_dwp_ ? GetNumSections() - k - 1 : k;
      const char *name = GetSectionName(section_headers_[shndx].sh_name);
      if (name != NULL && ElfReader::SectionNamesMatch(section_name, name)) {
        const ElfSectionReader<ElfArch> *section = GetSection(shndx);
        if (section == NULL) {
          return NULL;
        } else {
          *size = section->section_size();
          return section->contents();
        }
      }
    }
    return NULL;
  }

  // This is like GetSectionContentsByName() but it returns a lot of extra
  // information about the section.
  const char *GetSectionInfoByName(const string &section_name,
                                   ElfReader::SectionInfo *info) {
    for (unsigned int k = 0u; k < GetNumSections(); ++k) {
      // When searching for sections in a .dwp file, the sections
      // we're looking for will always be at the end of the section
      // table, so reverse the direction of iteration.
      int shndx = is_dwp_ ? GetNumSections() - k - 1 : k;
      const char *name = GetSectionName(section_headers_[shndx].sh_name);
      if (name != NULL && ElfReader::SectionNamesMatch(section_name, name)) {
        const ElfSectionReader<ElfArch> *section = GetSection(shndx);
        if (section == NULL) {
          return NULL;
        } else {
          info->type = section->header().sh_type;
          info->flags = section->header().sh_flags;
          info->addr = section->header().sh_addr;
          info->offset = section->header().sh_offset;
          info->size = section->header().sh_size;
          info->link = section->header().sh_link;
          info->info = section->header().sh_info;
          info->addralign = section->header().sh_addralign;
          info->entsize = section->header().sh_entsize;
          return section->contents();
        }
      }
    }
    return NULL;
  }

  // p_vaddr of the first PT_LOAD segment (if any), or 0 if no PT_LOAD
  // segments are present. This is the address an ELF image was linked
  // (by static linker) to be loaded at. Usually (but not always) 0 for
  // shared libraries and position-independent executables.
  uint64 VaddrOfFirstLoadSegment() const {
    // Relocatable objects (of type ET_REL) do not have LOAD segments.
    if (header_.e_type == ET_REL) {
      return 0;
    }
    for (int i = 0; i < GetNumProgramHeaders(); ++i) {
      if (program_headers_[i].p_type == PT_LOAD) {
        return program_headers_[i].p_vaddr;
      }
    }
    return 0;
  }

  // According to the LSB ("ELF special sections"), sections with debug
  // info are prefixed by ".debug".  The names are not specified, but they
  // look like ".debug_line", ".debug_info", etc.
  bool HasDebugSections() {
    // Debug sections are likely to be near the end, so reverse the
    // direction of iteration.
    for (int k = GetNumSections() - 1; k >= 0; --k) {
      const char *name = GetSectionName(section_headers_[k].sh_name);
      if (strncmp(name, ".debug", strlen(".debug")) == 0) return true;
      if (strncmp(name, ".zdebug", strlen(".zdebug")) == 0) return true;
    }
    return false;
  }

  bool IsDynamicSharedObject() const {
    return header_.e_type == ET_DYN;
  }

  // Return the number of sections.
  uint64_t GetNumSections() const {
    if (HasManySections())
      return first_section_header_.sh_size;
    return header_.e_shnum;
  }

 private:
  typedef vector<pair<uint64, const typename ElfArch::Sym *> > AddrToSymMap;

  static bool AddrToSymSorter(const typename AddrToSymMap::value_type& lhs,
                              const typename AddrToSymMap::value_type& rhs) {
    return lhs.first < rhs.first;
  }

  static bool AddrToSymEquals(const typename AddrToSymMap::value_type& lhs,
                              const typename AddrToSymMap::value_type& rhs) {
    return lhs.first == rhs.first;
  }

  // Does this ELF file have too many sections to fit in the program header?
  bool HasManySections() const {
    return header_.e_shnum == SHN_UNDEF;
  }

  // Return the number of program headers.
  int GetNumProgramHeaders() const {
    if (HasManySections() && header_.e_phnum == 0xffff &&
        first_section_header_.sh_info != 0)
      return first_section_header_.sh_info;
    return header_.e_phnum;
  }

  // Return the index of the string table.
  int GetStringTableIndex() const {
    if (HasManySections()) {
      if (header_.e_shstrndx == 0xffff)
        return first_section_header_.sh_link;
      else if (header_.e_shstrndx >= GetNumSections())
        return 0;
    }
    return header_.e_shstrndx;
  }

  // Given an offset into the section header string table, return the
  // section name.
  const char *GetSectionName(typename ElfArch::Word sh_name) {
    const ElfSectionReader<ElfArch> *shstrtab =
        GetSection(GetStringTableIndex());
    if (shstrtab != NULL) {
      return shstrtab->GetOffset(sh_name);
    }
    return NULL;
  }

  // Return an ElfSectionReader for the given section. The reader will
  // be freed when this object is destroyed.
  const ElfSectionReader<ElfArch> *GetSection(int num) {
    const char *name;
    // Hard-coding the name for the section-name string table prevents
    // infinite recursion.
    if (num == GetStringTableIndex())
      name = ".shstrtab";
    else
      name = GetSectionNameByIndex(num);
    ElfSectionReader<ElfArch> *& reader = sections_[num];
    if (reader == NULL)
      reader = new ElfSectionReader<ElfArch>(name, path_, fd_,
                                             section_headers_[num]);
    return reader;
  }

  // Parse out the overall header information from the file and assert
  // that it looks sane. This contains information like the magic
  // number and target architecture.
  bool ParseHeaders(int fd, const string &path) {
    // Read in the global ELF header.
    if (pread(fd, &header_, sizeof(header_), 0) != sizeof(header_)) {
      return false;
    }

    // Must be an executable, dynamic shared object or relocatable object
    if (header_.e_type != ET_EXEC &&
        header_.e_type != ET_DYN &&
        header_.e_type != ET_REL) {
      return false;
    }
    // Need a section header.
    if (header_.e_shoff == 0) {
      return false;
    }

    if (header_.e_shnum == SHN_UNDEF) {
      // The number of sections in the program header is only a 16-bit value. In
      // the event of overflow (greater than SHN_LORESERVE sections), e_shnum
      // will read SHN_UNDEF and the true number of section header table entries
      // is found in the sh_size field of the first section header.
      // See: http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html
      if (pread(fd, &first_section_header_, sizeof(first_section_header_),
                header_.e_shoff) != sizeof(first_section_header_)) {
        return false;
      }
    }

    // Dynamically allocate enough space to store the section headers
    // and read them out of the file.
    const int section_headers_size =
        GetNumSections() * sizeof(*section_headers_);
    section_headers_ = new typename ElfArch::Shdr[section_headers_size];
    if (pread(fd, section_headers_, section_headers_size, header_.e_shoff) !=
        section_headers_size) {
      return false;
    }

    // Dynamically allocate enough space to store the program headers
    // and read them out of the file.
    //const int program_headers_size =
    //    GetNumProgramHeaders() * sizeof(*program_headers_);
    program_headers_ = new typename ElfArch::Phdr[GetNumProgramHeaders()];

    // Presize the sections array for efficiency.
    sections_.resize(GetNumSections(), NULL);
    return true;
  }

  // Given the "value" of a function descriptor return the address of the
  // function (i.e. the dereferenced value). Otherwise return "value".
  uint64 AdjustPPC64FunctionDescriptorSymbolValue(uint64 value) {
    if (opd_section_ != NULL &&
        opd_info_.addr <= value &&
        value < opd_info_.addr + opd_info_.size) {
      uint64 offset = value - opd_info_.addr;
      return (*reinterpret_cast<const uint64*>(opd_section_ + offset));
    }
    return value;
  }

  void AdjustSymbolValue(typename ElfArch::Sym* sym) {
    switch (header_.e_machine) {
    case EM_ARM:
      // For ARM architecture, if the LSB of the function symbol offset is set,
      // it indicates a Thumb function.  This bit should not be taken literally.
      // Clear it.
      if (ElfArch::Type(sym) == STT_FUNC)
        sym->st_value = AdjustARMThumbSymbolValue(sym->st_value);
      break;
    case EM_386:
      // No adjustment needed for Intel x86 architecture.  However, explicitly
      // define this case as we use it quite often.
      break;
    case EM_PPC64:
      // PowerPC64 currently has function descriptors as part of the ABI.
      // Function symbols need to be adjusted accordingly.
      if (ElfArch::Type(sym) == STT_FUNC)
        sym->st_value = AdjustPPC64FunctionDescriptorSymbolValue(sym->st_value);
      break;
    default:
      break;
    }
  }

  friend class SymbolIterator<ElfArch>;

  // The file we're reading.
  const string path_;
  // Open file descriptor for path_. Not owned by this object.
  const int fd_;

  // The global header of the ELF file.
  typename ElfArch::Ehdr header_;

  // The header of the first section. This may be used to supplement the ELF
  // file header.
  typename ElfArch::Shdr first_section_header_;

  // Array of GetNumSections() section headers, allocated when we read
  // in the global header.
  typename ElfArch::Shdr *section_headers_;

  // Array of GetNumProgramHeaders() program headers, allocated when we read
  // in the global header.
  typename ElfArch::Phdr *program_headers_;

  // An array of pointers to ElfSectionReaders. Sections are
  // mmaped as they're needed and not released until this object is
  // destroyed.
  vector<ElfSectionReader<ElfArch>*> sections_;

  // For PowerPC64 we need to keep track of function descriptors when looking up
  // values for funtion symbols values. Function descriptors are kept in the
  // .opd section and are dereferenced to find the function address.
  ElfReader::SectionInfo opd_info_;
  const char *opd_section_;  // Must be checked for NULL before use.
  int64 base_for_text_;

  // Read PLT-related sections for the current architecture.
  bool plts_supported_;
  // Code size of each PLT function for the current architecture.
  size_t plt_code_size_;
  // Size of the special first entry in the .plt section that calls the runtime
  // loader resolution routine, and that all other entries jump to when doing
  // lazy symbol binding.
  size_t plt0_size_;

  // Maps a dynamic symbol index to a PLT offset.
  // The vector entry index is the dynamic symbol index.
  std::vector<uint64> symbols_plt_offsets_;

  // Container for PLT function name strings. These strings are passed by
  // reference to SymbolSink::AddSymbol() so they need to be stored somewhere.
  std::vector<string> plt_function_names_;

  bool visited_relocation_entries_;

  // True if this is a .dwp file.
  bool is_dwp_;
};

ElfReader::ElfReader(const string &path)
    : path_(path), fd_(-1), impl32_(NULL), impl64_(NULL) {
  // linux 2.6.XX kernel can show deleted files like this:
  //   /var/run/nscd/dbYLJYaE (deleted)
  // and the kernel-supplied vdso and vsyscall mappings like this:
  //   [vdso]
  //   [vsyscall]
  if (MyHasSuffixString(path, " (deleted)"))
    return;
  if (path == "[vdso]")
    return;
  if (path == "[vsyscall]")
    return;

  fd_ = open(path.c_str(), O_RDONLY);
}

ElfReader::~ElfReader() {
  if (fd_ != -1)
    close(fd_);
  if (impl32_ != NULL)
    delete impl32_;
  if (impl64_ != NULL)
    delete impl64_;
}


// The only word-size specific part of this file is IsNativeElfFile().
#if __WORDSIZE == 32
#define NATIVE_ELF_ARCH Elf32
#elif __WORDSIZE == 64
#define NATIVE_ELF_ARCH Elf64
#else
#error "Invalid word size"
#endif

template <typename ElfArch>
static bool IsElfFile(const int fd, const string &path) {
  if (fd < 0)
    return false;
  if (!ElfReaderImpl<ElfArch>::IsArchElfFile(fd, NULL)) {
    // No error message here.  IsElfFile gets called many times.
    return false;
  }
  return true;
}

bool ElfReader::IsNativeElfFile() const {
  return IsElfFile<NATIVE_ELF_ARCH>(fd_, path_);
}

bool ElfReader::IsElf32File() const {
  return IsElfFile<Elf32>(fd_, path_);
}

bool ElfReader::IsElf64File() const {
  return IsElfFile<Elf64>(fd_, path_);
}

/*
void ElfReader::AddSymbols(SymbolMap *symbols,
                           uint64 mem_offset, uint64 file_offset,
                           uint64 length) {
  if (fd_ < 0)
    return;
  // TODO(chatham): Actually use the information about file offset and
  // the length of the mapped section. On some machines the data
  // section gets mapped as executable, and we'll end up reading the
  // file twice and getting some of the offsets wrong.
  if (IsElf32File()) {
    GetImpl32()->GetSymbolPositions(symbols, SHT_SYMTAB,
                                    mem_offset, file_offset);
    GetImpl32()->GetSymbolPositions(symbols, SHT_DYNSYM,
                                    mem_offset, file_offset);
  } else if (IsElf64File()) {
    GetImpl64()->GetSymbolPositions(symbols, SHT_SYMTAB,
                                    mem_offset, file_offset);
    GetImpl64()->GetSymbolPositions(symbols, SHT_DYNSYM,
                                    mem_offset, file_offset);
  }
}
*/

void ElfReader::VisitSymbols(ElfReader::SymbolSink *sink) {
  VisitSymbols(sink, -1, -1);
}

void ElfReader::VisitSymbols(ElfReader::SymbolSink *sink,
                             int symbol_binding,
                             int symbol_type) {
  VisitSymbols(sink, symbol_binding, symbol_type, false);
}

void ElfReader::VisitSymbols(ElfReader::SymbolSink *sink,
                             int symbol_binding,
                             int symbol_type,
                             bool get_raw_symbol_values) {
  if (IsElf32File()) {
    GetImpl32()->VisitRelocationEntries();
    GetImpl32()->VisitSymbols(SHT_SYMTAB, sink, symbol_binding, symbol_type,
                              get_raw_symbol_values);
    GetImpl32()->VisitSymbols(SHT_DYNSYM, sink, symbol_binding, symbol_type,
                              get_raw_symbol_values);
  } else if (IsElf64File()) {
    GetImpl64()->VisitRelocationEntries();
    GetImpl64()->VisitSymbols(SHT_SYMTAB, sink, symbol_binding, symbol_type,
                              get_raw_symbol_values);
    GetImpl64()->VisitSymbols(SHT_DYNSYM, sink, symbol_binding, symbol_type,
                              get_raw_symbol_values);
  }
}

uint64 ElfReader::VaddrOfFirstLoadSegment() {
  if (IsElf32File()) {
    return GetImpl32()->VaddrOfFirstLoadSegment();
  } else if (IsElf64File()) {
    return GetImpl64()->VaddrOfFirstLoadSegment();
  } else {
    return 0;
  }
}

const char *ElfReader::GetSectionName(int shndx) {
  if (shndx < 0 || static_cast<unsigned int>(shndx) >= GetNumSections()) return NULL;
  if (IsElf32File()) {
    return GetImpl32()->GetSectionNameByIndex(shndx);
  } else if (IsElf64File()) {
    return GetImpl64()->GetSectionNameByIndex(shndx);
  } else {
    return NULL;
  }
}

uint64 ElfReader::GetNumSections() {
  if (IsElf32File()) {
    return GetImpl32()->GetNumSections();
  } else if (IsElf64File()) {
    return GetImpl64()->GetNumSections();
  } else {
    return 0;
  }
}

const char *ElfReader::GetSectionByIndex(int shndx, size_t *size) {
  if (IsElf32File()) {
    return GetImpl32()->GetSectionContentsByIndex(shndx, size);
  } else if (IsElf64File()) {
    return GetImpl64()->GetSectionContentsByIndex(shndx, size);
  } else {
    return NULL;
  }
}

const char *ElfReader::GetSectionByName(const string &section_name,
                                        size_t *size) {
  if (IsElf32File()) {
    return GetImpl32()->GetSectionContentsByName(section_name, size);
  } else if (IsElf64File()) {
    return GetImpl64()->GetSectionContentsByName(section_name, size);
  } else {
    return NULL;
  }
}

const char *ElfReader::GetSectionInfoByName(const string &section_name,
                                            SectionInfo *info) {
  if (IsElf32File()) {
    return GetImpl32()->GetSectionInfoByName(section_name, info);
  } else if (IsElf64File()) {
    return GetImpl64()->GetSectionInfoByName(section_name, info);
  } else {
    return NULL;
  }
}

bool ElfReader::SectionNamesMatch(const string &name, const string &sh_name) {
  if ((name.find(".debug_", 0) == 0) && (sh_name.find(".zdebug_", 0) == 0)) {
    const string name_suffix(name, strlen(".debug_"));
    const string sh_name_suffix(sh_name, strlen(".zdebug_"));
    return name_suffix == sh_name_suffix;
  }
  return name == sh_name;
}

bool ElfReader::IsDynamicSharedObject() {
  if (IsElf32File()) {
    return GetImpl32()->IsDynamicSharedObject();
  } else if (IsElf64File()) {
    return GetImpl64()->IsDynamicSharedObject();
  } else {
    return false;
  }
}

ElfReaderImpl<Elf32> *ElfReader::GetImpl32() {
  if (impl32_ == NULL) {
    impl32_ = new ElfReaderImpl<Elf32>(path_, fd_);
  }
  return impl32_;
}

ElfReaderImpl<Elf64> *ElfReader::GetImpl64() {
  if (impl64_ == NULL) {
    impl64_ = new ElfReaderImpl<Elf64>(path_, fd_);
  }
  return impl64_;
}

// Return true if file is an ELF binary of ElfArch, with unstripped
// debug info (debug_only=true) or symbol table (debug_only=false).
// Otherwise, return false.
template <typename ElfArch>
static bool IsNonStrippedELFBinaryImpl(const string &path, const int fd,
                                       bool debug_only) {
  if (!ElfReaderImpl<ElfArch>::IsArchElfFile(fd, NULL)) return false;
  ElfReaderImpl<ElfArch> elf_reader(path, fd);
  return debug_only ?
      elf_reader.HasDebugSections()
      : (elf_reader.GetSectionByType(SHT_SYMTAB) != NULL);
}

// Helper for the IsNon[Debug]StrippedELFBinary functions.
static bool IsNonStrippedELFBinaryHelper(const string &path,
                                         bool debug_only) {
  const int fd = open(path.c_str(), O_RDONLY);
  if (fd == -1) {
    return false;
  }

  if (IsNonStrippedELFBinaryImpl<Elf32>(path, fd, debug_only) ||
      IsNonStrippedELFBinaryImpl<Elf64>(path, fd, debug_only)) {
    close(fd);
    return true;
  }
  close(fd);
  return false;
}

bool ElfReader::IsNonStrippedELFBinary(const string &path) {
  return IsNonStrippedELFBinaryHelper(path, false);
}

bool ElfReader::IsNonDebugStrippedELFBinary(const string &path) {
  return IsNonStrippedELFBinaryHelper(path, true);
}
}  // namespace dwarf2reader