Jacobi.h 14.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_JACOBI_H
#define EIGEN_JACOBI_H

/** \ingroup Jacobi_Module
  * \jacobi_module
  * \class JacobiRotation
  * \brief Rotation given by a cosine-sine pair.
  *
  * This class represents a Jacobi or Givens rotation.
  * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
  * its cosine \c c and sine \c s as follow:
  * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$
  *
  * You can apply the respective counter-clockwise rotation to a column vector \c v by
  * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
  * \code
  * v.applyOnTheLeft(J.adjoint());
  * \endcode
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar> class JacobiRotation
{
  public:
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** Default constructor without any initialization. */
    JacobiRotation() {}

    /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
    JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}

    Scalar& c() { return m_c; }
    Scalar c() const { return m_c; }
    Scalar& s() { return m_s; }
    Scalar s() const { return m_s; }

    /** Concatenates two planar rotation */
    JacobiRotation operator*(const JacobiRotation& other)
    {
      return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s,
                            internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c)));
    }

    /** Returns the transposed transformation */
    JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); }

    /** Returns the adjoint transformation */
    JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); }

    template<typename Derived>
    bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
    bool makeJacobi(RealScalar x, Scalar y, RealScalar z);

    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);

  protected:
    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);

    Scalar m_c, m_s;
};

/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
  * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
  *
  * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  if(y == Scalar(0))
  {
    m_c = Scalar(1);
    m_s = Scalar(0);
    return false;
  }
  else
  {
    RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y));
    RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1));
    RealScalar t;
    if(tau>RealScalar(0))
    {
      t = RealScalar(1) / (tau + w);
    }
    else
    {
      t = RealScalar(1) / (tau - w);
    }
    RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
    RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1));
    m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n;
    m_c = n;
    return true;
  }
}

/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
  * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
  * a diagonal matrix \f$ A = J^* B J \f$
  *
  * Example: \include Jacobi_makeJacobi.cpp
  * Output: \verbinclude Jacobi_makeJacobi.out
  *
  * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
template<typename Derived>
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
{
  return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q)));
}

/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
  * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
  * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
  *
  * The value of \a z is returned if \a z is not null (the default is null).
  * Also note that G is built such that the cosine is always real.
  *
  * Example: \include Jacobi_makeGivens.cpp
  * Output: \verbinclude Jacobi_makeGivens.out
  *
  * This function implements the continuous Givens rotation generation algorithm
  * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
  * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
{
  makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
}


// specialization for complexes
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
{
  if(q==Scalar(0))
  {
    m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1);
    m_s = 0;
    if(r) *r = m_c * p;
  }
  else if(p==Scalar(0))
  {
    m_c = 0;
    m_s = -q/internal::abs(q);
    if(r) *r = internal::abs(q);
  }
  else
  {
    RealScalar p1 = internal::norm1(p);
    RealScalar q1 = internal::norm1(q);
    if(p1>=q1)
    {
      Scalar ps = p / p1;
      RealScalar p2 = internal::abs2(ps);
      Scalar qs = q / p1;
      RealScalar q2 = internal::abs2(qs);

      RealScalar u = internal::sqrt(RealScalar(1) + q2/p2);
      if(internal::real(p)<RealScalar(0))
        u = -u;

      m_c = Scalar(1)/u;
      m_s = -qs*internal::conj(ps)*(m_c/p2);
      if(r) *r = p * u;
    }
    else
    {
      Scalar ps = p / q1;
      RealScalar p2 = internal::abs2(ps);
      Scalar qs = q / q1;
      RealScalar q2 = internal::abs2(qs);

      RealScalar u = q1 * internal::sqrt(p2 + q2);
      if(internal::real(p)<RealScalar(0))
        u = -u;

      p1 = internal::abs(p);
      ps = p/p1;
      m_c = p1/u;
      m_s = -internal::conj(ps) * (q/u);
      if(r) *r = ps * u;
    }
  }
}

// specialization for reals
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
{

  if(q==Scalar(0))
  {
    m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
    m_s = Scalar(0);
    if(r) *r = internal::abs(p);
  }
  else if(p==Scalar(0))
  {
    m_c = Scalar(0);
    m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
    if(r) *r = internal::abs(q);
  }
  else if(internal::abs(p) > internal::abs(q))
  {
    Scalar t = q/p;
    Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
    if(p<Scalar(0))
      u = -u;
    m_c = Scalar(1)/u;
    m_s = -t * m_c;
    if(r) *r = p * u;
  }
  else
  {
    Scalar t = p/q;
    Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
    if(q<Scalar(0))
      u = -u;
    m_s = -Scalar(1)/u;
    m_c = -t * m_s;
    if(r) *r = q * u;
  }

}

/****************************************************************************************
*   Implementation of MatrixBase methods
****************************************************************************************/

/** \jacobi_module
  * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
  * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
}

/** \jacobi_module
  * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
  * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
  *
  * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
  */
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
  RowXpr x(this->row(p));
  RowXpr y(this->row(q));
  internal::apply_rotation_in_the_plane(x, y, j);
}

/** \ingroup Jacobi_Module
  * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
  * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
  *
  * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
  */
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
  ColXpr x(this->col(p));
  ColXpr y(this->col(q));
  internal::apply_rotation_in_the_plane(x, y, j.transpose());
}

namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
{
  typedef typename VectorX::Index Index;
  typedef typename VectorX::Scalar Scalar;
  enum { PacketSize = packet_traits<Scalar>::size };
  typedef typename packet_traits<Scalar>::type Packet;
  eigen_assert(_x.size() == _y.size());
  Index size = _x.size();
  Index incrx = _x.innerStride();
  Index incry = _y.innerStride();

  Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
  Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);

  /*** dynamic-size vectorized paths ***/

  if(VectorX::SizeAtCompileTime == Dynamic &&
    (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
    ((incrx==1 && incry==1) || PacketSize == 1))
  {
    // both vectors are sequentially stored in memory => vectorization
    enum { Peeling = 2 };

    Index alignedStart = first_aligned(y, size);
    Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;

    const Packet pc = pset1<Packet>(j.c());
    const Packet ps = pset1<Packet>(j.s());
    conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;

    for(Index i=0; i<alignedStart; ++i)
    {
      Scalar xi = x[i];
      Scalar yi = y[i];
      x[i] =  j.c() * xi + conj(j.s()) * yi;
      y[i] = -j.s() * xi + conj(j.c()) * yi;
    }

    Scalar* EIGEN_RESTRICT px = x + alignedStart;
    Scalar* EIGEN_RESTRICT py = y + alignedStart;

    if(first_aligned(x, size)==alignedStart)
    {
      for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
      {
        Packet xi = pload<Packet>(px);
        Packet yi = pload<Packet>(py);
        pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
        pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
        px += PacketSize;
        py += PacketSize;
      }
    }
    else
    {
      Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
      for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
      {
        Packet xi   = ploadu<Packet>(px);
        Packet xi1  = ploadu<Packet>(px+PacketSize);
        Packet yi   = pload <Packet>(py);
        Packet yi1  = pload <Packet>(py+PacketSize);
        pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
        pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
        pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
        pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
        px += Peeling*PacketSize;
        py += Peeling*PacketSize;
      }
      if(alignedEnd!=peelingEnd)
      {
        Packet xi = ploadu<Packet>(x+peelingEnd);
        Packet yi = pload <Packet>(y+peelingEnd);
        pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
        pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
      }
    }

    for(Index i=alignedEnd; i<size; ++i)
    {
      Scalar xi = x[i];
      Scalar yi = y[i];
      x[i] =  j.c() * xi + conj(j.s()) * yi;
      y[i] = -j.s() * xi + conj(j.c()) * yi;
    }
  }

  /*** fixed-size vectorized path ***/
  else if(VectorX::SizeAtCompileTime != Dynamic &&
          (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
          (VectorX::Flags & VectorY::Flags & AlignedBit))
  {
    const Packet pc = pset1<Packet>(j.c());
    const Packet ps = pset1<Packet>(j.s());
    conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
    Scalar* EIGEN_RESTRICT px = x;
    Scalar* EIGEN_RESTRICT py = y;
    for(Index i=0; i<size; i+=PacketSize)
    {
      Packet xi = pload<Packet>(px);
      Packet yi = pload<Packet>(py);
      pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
      pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
      px += PacketSize;
      py += PacketSize;
    }
  }

  /*** non-vectorized path ***/
  else
  {
    for(Index i=0; i<size; ++i)
    {
      Scalar xi = *x;
      Scalar yi = *y;
      *x =  j.c() * xi + conj(j.s()) * yi;
      *y = -j.s() * xi + conj(j.c()) * yi;
      x += incrx;
      y += incry;
    }
  }
}
}

#endif // EIGEN_JACOBI_H