Quaternion.h 27.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H

/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/

namespace internal {
template<typename Other,
         int OtherRows=Other::RowsAtCompileTime,
         int OtherCols=Other::ColsAtCompileTime>
struct quaternionbase_assign_impl;
}

template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
  typedef RotationBase<Derived, 3> Base;
public:
  using Base::operator*;
  using Base::derived;

  typedef typename internal::traits<Derived>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename internal::traits<Derived>::Coefficients Coefficients;
  enum {
    Flags = Eigen::internal::traits<Derived>::Flags
  };

 // typedef typename Matrix<Scalar,4,1> Coefficients;
  /** the type of a 3D vector */
  typedef Matrix<Scalar,3,1> Vector3;
  /** the equivalent rotation matrix type */
  typedef Matrix<Scalar,3,3> Matrix3;
  /** the equivalent angle-axis type */
  typedef AngleAxis<Scalar> AngleAxisType;



  /** \returns the \c x coefficient */
  inline Scalar x() const { return this->derived().coeffs().coeff(0); }
  /** \returns the \c y coefficient */
  inline Scalar y() const { return this->derived().coeffs().coeff(1); }
  /** \returns the \c z coefficient */
  inline Scalar z() const { return this->derived().coeffs().coeff(2); }
  /** \returns the \c w coefficient */
  inline Scalar w() const { return this->derived().coeffs().coeff(3); }

  /** \returns a reference to the \c x coefficient */
  inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
  /** \returns a reference to the \c y coefficient */
  inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
  /** \returns a reference to the \c z coefficient */
  inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
  /** \returns a reference to the \c w coefficient */
  inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }

  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
  inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }

  /** \returns a vector expression of the imaginary part (x,y,z) */
  inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }

  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
  inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }

  /** \returns a vector expression of the coefficients (x,y,z,w) */
  inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }

  EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);

// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
//  Derived& operator=(const QuaternionBase& other)
//  { return operator=<Derived>(other); }

  Derived& operator=(const AngleAxisType& aa);
  template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);

  /** \returns a quaternion representing an identity rotation
    * \sa MatrixBase::Identity()
    */
  inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }

  /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
    */
  inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }

  /** \returns the squared norm of the quaternion's coefficients
    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
    */
  inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }

  /** \returns the norm of the quaternion's coefficients
    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
    */
  inline Scalar norm() const { return coeffs().norm(); }

  /** Normalizes the quaternion \c *this
    * \sa normalized(), MatrixBase::normalize() */
  inline void normalize() { coeffs().normalize(); }
  /** \returns a normalized copy of \c *this
    * \sa normalize(), MatrixBase::normalized() */
  inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }

    /** \returns the dot product of \c *this and \a other
    * Geometrically speaking, the dot product of two unit quaternions
    * corresponds to the cosine of half the angle between the two rotations.
    * \sa angularDistance()
    */
  template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }

  template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;

  /** \returns an equivalent 3x3 rotation matrix */
  Matrix3 toRotationMatrix() const;

  /** \returns the quaternion which transform \a a into \a b through a rotation */
  template<typename Derived1, typename Derived2>
  Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);

  template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);

  /** \returns the quaternion describing the inverse rotation */
  Quaternion<Scalar> inverse() const;

  /** \returns the conjugated quaternion */
  Quaternion<Scalar> conjugate() const;

  /** \returns an interpolation for a constant motion between \a other and \c *this
    * \a t in [0;1]
    * see http://en.wikipedia.org/wiki/Slerp
    */
  template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  template<class OtherDerived>
  bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
  { return coeffs().isApprox(other.coeffs(), prec); }

	/** return the result vector of \a v through the rotation*/
  EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
  {
    return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(
      coeffs().template cast<NewScalarType>());
  }
  
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
# include EIGEN_QUATERNIONBASE_PLUGIN
#endif
};

/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Quaternion
  *
  * \brief The quaternion class used to represent 3D orientations and rotations
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  *
  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
  * orientations and rotations of objects in three dimensions. Compared to other representations
  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
  * \li \b compact storage (4 scalars)
  * \li \b efficient to compose (28 flops),
  * \li \b stable spherical interpolation
  *
  * The following two typedefs are provided for convenience:
  * \li \c Quaternionf for \c float
  * \li \c Quaterniond for \c double
  *
  * \sa  class AngleAxis, class Transform
  */

namespace internal {
template<typename _Scalar,int _Options>
struct traits<Quaternion<_Scalar,_Options> >
{
  typedef Quaternion<_Scalar,_Options> PlainObject;
  typedef _Scalar Scalar;
  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
  enum{
    IsAligned = bool(EIGEN_ALIGN) && ((int(_Options)&Aligned)==Aligned),
    Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
  };
};
}

template<typename _Scalar, int _Options>
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >{
  typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
public:
  typedef _Scalar Scalar;

  EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
  using Base::operator*=;

  typedef typename internal::traits<Quaternion<Scalar,_Options> >::Coefficients Coefficients;
  typedef typename Base::AngleAxisType AngleAxisType;

  /** Default constructor leaving the quaternion uninitialized. */
  inline Quaternion() {}

  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
    * its four coefficients \a w, \a x, \a y and \a z.
    *
    * \warning Note the order of the arguments: the real \a w coefficient first,
    * while internally the coefficients are stored in the following order:
    * [\c x, \c y, \c z, \c w]
    */
  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}

  /** Constructs and initialize a quaternion from the array data */
  inline Quaternion(const Scalar* data) : m_coeffs(data) {}

  /** Copy constructor */
  template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }

  /** Constructs and initializes a quaternion from the angle-axis \a aa */
  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }

  /** Constructs and initializes a quaternion from either:
    *  - a rotation matrix expression,
    *  - a 4D vector expression representing quaternion coefficients.
    */
  template<typename Derived>
  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }

  inline Coefficients& coeffs() { return m_coeffs;}
  inline const Coefficients& coeffs() const { return m_coeffs;}

protected:
  Coefficients m_coeffs;
  
#ifndef EIGEN_PARSED_BY_DOXYGEN
    EIGEN_STRONG_INLINE static void _check_template_params()
    {
      EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
        INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }
#endif
};

/** \ingroup Geometry_Module
  * single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
  * double precision quaternion type */
typedef Quaternion<double> Quaterniond;

/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/

namespace internal {
  template<typename _Scalar, int _Options>
  struct traits<Map<Quaternion<_Scalar>, _Options> >:
  traits<Quaternion<_Scalar, _Options> >
  {
    typedef _Scalar Scalar;
    typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;

    typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
    enum {
      IsAligned = TraitsBase::IsAligned,

      Flags = TraitsBase::Flags
    };
  };
}

namespace internal {
  template<typename _Scalar, int _Options>
  struct traits<Map<const Quaternion<_Scalar>, _Options> >:
  traits<Quaternion<_Scalar> >
  {
    typedef _Scalar Scalar;
    typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;

    typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
    enum {
      IsAligned = TraitsBase::IsAligned,
      Flags = TraitsBase::Flags & ~LvalueBit
    };
  };
}

/** \brief Quaternion expression mapping a constant memory buffer
  *
  * \param _Scalar the type of the Quaternion coefficients
  * \param _Options see class Map
  *
  * This is a specialization of class Map for Quaternion. This class allows to view
  * a 4 scalar memory buffer as an Eigen's Quaternion object.
  *
  * \sa class Map, class Quaternion, class QuaternionBase
  */
template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
{
    typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;

  public:
    typedef _Scalar Scalar;
    typedef typename internal::traits<Map>::Coefficients Coefficients;
    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
    using Base::operator*=;

    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
      *
      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
      * \code *coeffs == {x, y, z, w} \endcode
      *
      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}

    inline const Coefficients& coeffs() const { return m_coeffs;}

  protected:
    const Coefficients m_coeffs;
};

/** \brief Expression of a quaternion from a memory buffer
  *
  * \param _Scalar the type of the Quaternion coefficients
  * \param _Options see class Map
  *
  * This is a specialization of class Map for Quaternion. This class allows to view
  * a 4 scalar memory buffer as an Eigen's  Quaternion object.
  *
  * \sa class Map, class Quaternion, class QuaternionBase
  */
template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
{
    typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;

  public:
    typedef _Scalar Scalar;
    typedef typename internal::traits<Map>::Coefficients Coefficients;
    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
    using Base::operator*=;

    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
      *
      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
      * \code *coeffs == {x, y, z, w} \endcode
      *
      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
    EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}

    inline Coefficients& coeffs() { return m_coeffs; }
    inline const Coefficients& coeffs() const { return m_coeffs; }

  protected:
    Coefficients m_coeffs;
};

/** \ingroup Geometry_Module
  * Map an unaligned array of single precision scalar as a quaternion */
typedef Map<Quaternion<float>, 0>         QuaternionMapf;
/** \ingroup Geometry_Module
  * Map an unaligned array of double precision scalar as a quaternion */
typedef Map<Quaternion<double>, 0>        QuaternionMapd;
/** \ingroup Geometry_Module
  * Map a 16-bits aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
/** \ingroup Geometry_Module
  * Map a 16-bits aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;

/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/

// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal {
template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
{
  EIGEN_STRONG_INLINE static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
    return Quaternion<Scalar>
    (
      a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
      a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
      a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
      a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
    );
  }
};
}

/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
                         typename internal::traits<Derived>::Scalar,
                         internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
}

/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
  derived() = derived() * other.derived();
  return derived();
}

/** Rotation of a vector by a quaternion.
  * \remarks If the quaternion is used to rotate several points (>1)
  * then it is much more efficient to first convert it to a 3x3 Matrix.
  * Comparison of the operation cost for n transformations:
  *   - Quaternion2:    30n
  *   - Via a Matrix3: 24 + 15n
  */
template <class Derived>
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(Vector3 v) const
{
    // Note that this algorithm comes from the optimization by hand
    // of the conversion to a Matrix followed by a Matrix/Vector product.
    // It appears to be much faster than the common algorithm found
    // in the litterature (30 versus 39 flops). It also requires two
    // Vector3 as temporaries.
    Vector3 uv = this->vec().cross(v);
    uv += uv;
    return v + this->w() * uv + this->vec().cross(uv);
}

template<class Derived>
EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
  coeffs() = other.coeffs();
  return derived();
}

template<class Derived>
template<class OtherDerived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
  coeffs() = other.coeffs();
  return derived();
}

/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
  */
template<class Derived>
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
  this->w() = internal::cos(ha);
  this->vec() = internal::sin(ha) * aa.axis();
  return derived();
}

/** Set \c *this from the expression \a xpr:
  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
  *     and \a xpr is converted to a quaternion
  */

template<class Derived>
template<class MatrixDerived>
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
  internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
  return derived();
}

/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
  * be normalized, otherwise the result is undefined.
  */
template<class Derived>
inline typename QuaternionBase<Derived>::Matrix3
QuaternionBase<Derived>::toRotationMatrix(void) const
{
  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
  // if not inlined then the cost of the return by value is huge ~ +35%,
  // however, not inlining this function is an order of magnitude slower, so
  // it has to be inlined, and so the return by value is not an issue
  Matrix3 res;

  const Scalar tx  = 2*this->x();
  const Scalar ty  = 2*this->y();
  const Scalar tz  = 2*this->z();
  const Scalar twx = tx*this->w();
  const Scalar twy = ty*this->w();
  const Scalar twz = tz*this->w();
  const Scalar txx = tx*this->x();
  const Scalar txy = ty*this->x();
  const Scalar txz = tz*this->x();
  const Scalar tyy = ty*this->y();
  const Scalar tyz = tz*this->y();
  const Scalar tzz = tz*this->z();

  res.coeffRef(0,0) = 1-(tyy+tzz);
  res.coeffRef(0,1) = txy-twz;
  res.coeffRef(0,2) = txz+twy;
  res.coeffRef(1,0) = txy+twz;
  res.coeffRef(1,1) = 1-(txx+tzz);
  res.coeffRef(1,2) = tyz-twx;
  res.coeffRef(2,0) = txz-twy;
  res.coeffRef(2,1) = tyz+twx;
  res.coeffRef(2,2) = 1-(txx+tyy);

  return res;
}

/** Sets \c *this to be a quaternion representing a rotation between
  * the two arbitrary vectors \a a and \a b. In other words, the built
  * rotation represent a rotation sending the line of direction \a a
  * to the line of direction \a b, both lines passing through the origin.
  *
  * \returns a reference to \c *this.
  *
  * Note that the two input vectors do \b not have to be normalized, and
  * do not need to have the same norm.
  */
template<class Derived>
template<typename Derived1, typename Derived2>
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
  using std::max;
  Vector3 v0 = a.normalized();
  Vector3 v1 = b.normalized();
  Scalar c = v1.dot(v0);

  // if dot == -1, vectors are nearly opposites
  // => accuraletly compute the rotation axis by computing the
  //    intersection of the two planes. This is done by solving:
  //       x^T v0 = 0
  //       x^T v1 = 0
  //    under the constraint:
  //       ||x|| = 1
  //    which yields a singular value problem
  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
  {
    c = max<Scalar>(c,-1);
    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
    Vector3 axis = svd.matrixV().col(2);

    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
    this->w() = internal::sqrt(w2);
    this->vec() = axis * internal::sqrt(Scalar(1) - w2);
    return derived();
  }
  Vector3 axis = v0.cross(v1);
  Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
  Scalar invs = Scalar(1)/s;
  this->vec() = axis * invs;
  this->w() = s * Scalar(0.5);

  return derived();
}

/** \returns the multiplicative inverse of \c *this
  * Note that in most cases, i.e., if you simply want the opposite rotation,
  * and/or the quaternion is normalized, then it is enough to use the conjugate.
  *
  * \sa QuaternionBase::conjugate()
  */
template <class Derived>
inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
  Scalar n2 = this->squaredNorm();
  if (n2 > 0)
    return Quaternion<Scalar>(conjugate().coeffs() / n2);
  else
  {
    // return an invalid result to flag the error
    return Quaternion<Scalar>(Coefficients::Zero());
  }
}

/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
  * if the quaternion is normalized.
  * The conjugate of a quaternion represents the opposite rotation.
  *
  * \sa Quaternion2::inverse()
  */
template <class Derived>
inline Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
  return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
}

/** \returns the angle (in radian) between two rotations
  * \sa dot()
  */
template <class Derived>
template <class OtherDerived>
inline typename internal::traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
  using std::acos;
  double d = internal::abs(this->dot(other));
  if (d>=1.0)
    return Scalar(0);
  return static_cast<Scalar>(2 * acos(d));
}

/** \returns the spherical linear interpolation between the two quaternions
  * \c *this and \a other at the parameter \a t
  */
template <class Derived>
template <class OtherDerived>
Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
{
  using std::acos;
  static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
  Scalar d = this->dot(other);
  Scalar absD = internal::abs(d);

  Scalar scale0;
  Scalar scale1;

  if (absD>=one)
  {
    scale0 = Scalar(1) - t;
    scale1 = t;
  }
  else
  {
    // theta is the angle between the 2 quaternions
    Scalar theta = acos(absD);
    Scalar sinTheta = internal::sin(theta);

    scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
    scale1 = internal::sin( ( t * theta) ) / sinTheta;
    if (d<0)
      scale1 = -scale1;
  }

  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}

namespace internal {

// set from a rotation matrix
template<typename Other>
struct quaternionbase_assign_impl<Other,3,3>
{
  typedef typename Other::Scalar Scalar;
  typedef DenseIndex Index;
  template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& mat)
  {
    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
    // Ken Shoemake, 1987 SIGGRAPH course notes
    Scalar t = mat.trace();
    if (t > Scalar(0))
    {
      t = sqrt(t + Scalar(1.0));
      q.w() = Scalar(0.5)*t;
      t = Scalar(0.5)/t;
      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
    }
    else
    {
      DenseIndex i = 0;
      if (mat.coeff(1,1) > mat.coeff(0,0))
        i = 1;
      if (mat.coeff(2,2) > mat.coeff(i,i))
        i = 2;
      DenseIndex j = (i+1)%3;
      DenseIndex k = (j+1)%3;

      t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
      t = Scalar(0.5)/t;
      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
    }
  }
};

// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct quaternionbase_assign_impl<Other,4,1>
{
  typedef typename Other::Scalar Scalar;
  template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& vec)
  {
    q.coeffs() = vec;
  }
};

} // end namespace internal

#endif // EIGEN_QUATERNION_H