LU.h 5.08 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN2_LU_H
#define EIGEN2_LU_H

template<typename MatrixType>
class LU : public FullPivLU<MatrixType>
{
  public:

    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
    typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;

    typedef Matrix<typename MatrixType::Scalar,
                  MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
                                                 // so that the product "matrix * kernel = zero" makes sense
                  Dynamic,                       // we don't know at compile-time the dimension of the kernel
                  MatrixType::Options,
                  MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
                  MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
                                                   // of columns of the original matrix
    > KernelResultType;

    typedef Matrix<typename MatrixType::Scalar,
                   MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
                                                  // of rows of the original matrix
                   Dynamic,                       // we don't know at compile time the dimension of the image (the rank)
                   MatrixType::Options,
                   MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
                   MatrixType::MaxColsAtCompileTime  // so it has the same number of rows and at most as many columns.
    > ImageResultType;

    typedef FullPivLU<MatrixType> Base;
    LU() : Base() {}

    template<typename T>
    explicit LU(const T& t) : Base(t), m_originalMatrix(t) {}

    template<typename OtherDerived, typename ResultType>
    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
    {
      *result = static_cast<const Base*>(this)->solve(b);
      return true;
    }

    template<typename ResultType>
    inline void computeInverse(ResultType *result) const
    {
      solve(MatrixType::Identity(this->rows(), this->cols()), result);
    }
    
    template<typename KernelMatrixType>
    void computeKernel(KernelMatrixType *result) const
    {
      *result = static_cast<const Base*>(this)->kernel();
    }
    
    template<typename ImageMatrixType>
    void computeImage(ImageMatrixType *result) const
    {
      *result = static_cast<const Base*>(this)->image(m_originalMatrix);
    }
    
    const ImageResultType image() const
    {
      return static_cast<const Base*>(this)->image(m_originalMatrix);
    }
    
    const MatrixType& m_originalMatrix;
};

#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
  *
  * Synonym of partialPivLu().
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const LU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
  return LU<PlainObject>(eval());
}
#endif

#ifdef EIGEN2_SUPPORT
/** \lu_module
  *
  * Synonym of partialPivLu().
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const LU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::eigen2_lu() const
{
  return LU<PlainObject>(eval());
}
#endif


#endif // EIGEN2_LU_H