mathutil.h 4.78 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_BASE_MATHUTIL_H_
#define OR_TOOLS_BASE_MATHUTIL_H_

#include <math.h>

#include <algorithm>
#include <vector>

#include "absl/base/casts.h"
#include "ortools/base/basictypes.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"

namespace operations_research {
class MathUtil {
 public:
  // CeilOfRatio<IntegralType>
  // FloorOfRatio<IntegralType>
  //   Returns the ceil (resp. floor) of the ratio of two integers.
  //
  //   IntegralType: any integral type, whether signed or not.
  //   numerator: any integer: positive, negative, or zero.
  //   denominator: a non-zero integer, positive or negative.
  template <typename IntegralType>
  static IntegralType CeilOfRatio(IntegralType numerator,
                                  IntegralType denominator) {
    DCHECK_NE(0, denominator);
    const IntegralType rounded_toward_zero = numerator / denominator;
    const IntegralType intermediate_product = rounded_toward_zero * denominator;
    const bool needs_adjustment =
        (rounded_toward_zero >= 0) &&
        ((denominator > 0 && numerator > intermediate_product) ||
         (denominator < 0 && numerator < intermediate_product));
    const IntegralType adjustment = static_cast<IntegralType>(needs_adjustment);
    const IntegralType ceil_of_ratio = rounded_toward_zero + adjustment;
    return ceil_of_ratio;
  }
  template <typename IntegralType>
  static IntegralType FloorOfRatio(IntegralType numerator,
                                   IntegralType denominator) {
    DCHECK_NE(0, denominator);
    const IntegralType rounded_toward_zero = numerator / denominator;
    const IntegralType intermediate_product = rounded_toward_zero * denominator;
    const bool needs_adjustment =
        (rounded_toward_zero <= 0) &&
        ((denominator > 0 && numerator < intermediate_product) ||
         (denominator < 0 && numerator > intermediate_product));
    const IntegralType adjustment = static_cast<IntegralType>(needs_adjustment);
    const IntegralType floor_of_ratio = rounded_toward_zero - adjustment;
    return floor_of_ratio;
  }

  // Returns the greatest common divisor of two unsigned integers x and y.
  static unsigned int GCD(unsigned int x, unsigned int y) {
    while (y != 0) {
      unsigned int r = x % y;
      x = y;
      y = r;
    }
    return x;
  }

  // Returns the least common multiple of two unsigned integers.  Returns zero
  // if either is zero.
  static unsigned int LeastCommonMultiple(unsigned int a, unsigned int b) {
    if (a > b) {
      return (a / MathUtil::GCD(a, b)) * b;
    } else if (a < b) {
      return (b / MathUtil::GCD(b, a)) * a;
    } else {
      return a;
    }
  }

  // Absolute value of x.
  // Works correctly for unsigned types and
  // for special floating point values.
  // Note: 0.0 and -0.0 are not differentiated by Abs (Abs(0.0) is -0.0),
  // which should be OK: see the comment for Max above.
  template <typename T>
  static T Abs(const T x) {
    return x > 0 ? x : -x;
  }

  // Returns the square of x.
  template <typename T>
  static T Square(const T x) {
    return x * x;
  }

  // Euclid's Algorithm.
  // Returns: the greatest common divisor of two unsigned integers x and y.
  static int64 GCD64(int64 x, int64 y) {
    DCHECK_GE(x, 0);
    DCHECK_GE(y, 0);
    while (y != 0) {
      int64 r = x % y;
      x = y;
      y = r;
    }
    return x;
  }

  template <typename T>
  static T IPow(T base, int exp) {
    return pow(base, exp);
  }

  template <class IntOut, class FloatIn>
  static IntOut Round(FloatIn x) {
    // We don't use sgn(x) below because there is no need to distinguish the
    // (x == 0) case.  Also note that there are specialized faster versions
    // of this function for Intel, ARM and PPC processors at the bottom
    // of this file.
    if (x > -0.5 && x < 0.5) {
      // This case is special, because for largest floating point number
      // below 0.5, the addition of 0.5 yields 1 and this would lead
      // to incorrect result.
      return static_cast<IntOut>(0);
    }
    return static_cast<IntOut>(x < 0 ? (x - 0.5) : (x + 0.5));
  }

  static int64 FastInt64Round(double x) { return Round<int64>(x); }
};
}  // namespace operations_research

#endif  // OR_TOOLS_BASE_MATHUTIL_H_