AssignEvaluator.h 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H

namespace Eigen {

// This implementation is based on Assign.h

namespace internal {
  
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling       *
***************************************************************************/

// copy_using_evaluator_traits is based on assign_traits

template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
  typedef typename DstEvaluator::XprType Dst;
  typedef typename Dst::Scalar DstScalar;
  
  enum {
    DstFlags = DstEvaluator::Flags,
    SrcFlags = SrcEvaluator::Flags
  };
  
public:
  enum {
    DstAlignment = DstEvaluator::Alignment,
    SrcAlignment = SrcEvaluator::Alignment,
    DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
    JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
  };

private:
  enum {
    InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
              : int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
              : int(Dst::RowsAtCompileTime),
    InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
              : int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
              : int(Dst::MaxRowsAtCompileTime),
    OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
    MaxSizeAtCompileTime = Dst::SizeAtCompileTime
  };

  // TODO distinguish between linear traversal and inner-traversals
  typedef typename find_best_packet<DstScalar,Dst::SizeAtCompileTime>::type LinearPacketType;
  typedef typename find_best_packet<DstScalar,InnerSize>::type InnerPacketType;

  enum {
    LinearPacketSize = unpacket_traits<LinearPacketType>::size,
    InnerPacketSize = unpacket_traits<InnerPacketType>::size
  };

public:
  enum {
    LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment,
    InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment
  };

private:
  enum {
    DstIsRowMajor = DstFlags&RowMajorBit,
    SrcIsRowMajor = SrcFlags&RowMajorBit,
    StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
    MightVectorize = bool(StorageOrdersAgree)
                  && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
                  && bool(functor_traits<AssignFunc>::PacketAccess),
    MayInnerVectorize  = MightVectorize
                       && int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0
                       && int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0
                       && (EIGEN_UNALIGNED_VECTORIZE  || int(JointAlignment)>=int(InnerRequiredAlignment)),
    MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
    MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess)
                       && (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
      /* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
         so it's only good for large enough sizes. */
    MaySliceVectorize  = bool(MightVectorize) && bool(DstHasDirectAccess)
                       && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize)))
      /* slice vectorization can be slow, so we only want it if the slices are big, which is
         indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
         in a fixed-size matrix
         However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
  };

public:
  enum {
    Traversal = int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize) ? int(LinearVectorizedTraversal)
              : int(MayInnerVectorize)   ? int(InnerVectorizedTraversal)
              : int(MayLinearVectorize)  ? int(LinearVectorizedTraversal)
              : int(MaySliceVectorize)   ? int(SliceVectorizedTraversal)
              : int(MayLinearize)        ? int(LinearTraversal)
                                         : int(DefaultTraversal),
    Vectorized = int(Traversal) == InnerVectorizedTraversal
              || int(Traversal) == LinearVectorizedTraversal
              || int(Traversal) == SliceVectorizedTraversal
  };

  typedef typename conditional<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType>::type PacketType;

private:
  enum {
    ActualPacketSize    = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize
                        : Vectorized ? InnerPacketSize
                        : 1,
    UnrollingLimit      = EIGEN_UNROLLING_LIMIT * ActualPacketSize,
    MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
                       && int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit),
    MayUnrollInner      = int(InnerSize) != Dynamic
                       && int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit)
  };

public:
  enum {
    Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
                ? (
                    int(MayUnrollCompletely) ? int(CompleteUnrolling)
                  : int(MayUnrollInner)      ? int(InnerUnrolling)
                                             : int(NoUnrolling)
                  )
              : int(Traversal) == int(LinearVectorizedTraversal)
                ? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)))
                          ? int(CompleteUnrolling)
                          : int(NoUnrolling) )
              : int(Traversal) == int(LinearTraversal)
                ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) 
                                              : int(NoUnrolling) )
#if EIGEN_UNALIGNED_VECTORIZE
              : int(Traversal) == int(SliceVectorizedTraversal)
                ? ( bool(MayUnrollInner) ? int(InnerUnrolling)
                                         : int(NoUnrolling) )
#endif
              : int(NoUnrolling)
  };

#ifdef EIGEN_DEBUG_ASSIGN
  static void debug()
  {
    std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
    std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
    std::cerr.setf(std::ios::hex, std::ios::basefield);
    std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
    std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
    std::cerr.unsetf(std::ios::hex);
    EIGEN_DEBUG_VAR(DstAlignment)
    EIGEN_DEBUG_VAR(SrcAlignment)
    EIGEN_DEBUG_VAR(LinearRequiredAlignment)
    EIGEN_DEBUG_VAR(InnerRequiredAlignment)
    EIGEN_DEBUG_VAR(JointAlignment)
    EIGEN_DEBUG_VAR(InnerSize)
    EIGEN_DEBUG_VAR(InnerMaxSize)
    EIGEN_DEBUG_VAR(LinearPacketSize)
    EIGEN_DEBUG_VAR(InnerPacketSize)
    EIGEN_DEBUG_VAR(ActualPacketSize)
    EIGEN_DEBUG_VAR(StorageOrdersAgree)
    EIGEN_DEBUG_VAR(MightVectorize)
    EIGEN_DEBUG_VAR(MayLinearize)
    EIGEN_DEBUG_VAR(MayInnerVectorize)
    EIGEN_DEBUG_VAR(MayLinearVectorize)
    EIGEN_DEBUG_VAR(MaySliceVectorize)
    std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
    EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
    EIGEN_DEBUG_VAR(UnrollingLimit)
    EIGEN_DEBUG_VAR(MayUnrollCompletely)
    EIGEN_DEBUG_VAR(MayUnrollInner)
    std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
    std::cerr << std::endl;
  }
#endif
};

/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/

/************************
*** Default traversal ***
************************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
  // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
  typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
  typedef typename DstEvaluatorType::XprType DstXprType;
  
  enum {
    outer = Index / DstXprType::InnerSizeAtCompileTime,
    inner = Index % DstXprType::InnerSizeAtCompileTime
  };

  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    kernel.assignCoeffByOuterInner(outer, inner);
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
  {
    kernel.assignCoeffByOuterInner(outer, Index_);
    copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_+1, Stop>::run(kernel, outer);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { }
};

/***********************
*** Linear traversal ***
***********************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
  {
    kernel.assignCoeff(Index);
    copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

/**************************
*** Inner vectorization ***
**************************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
  // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
  typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
  typedef typename DstEvaluatorType::XprType DstXprType;
  typedef typename Kernel::PacketType PacketType;
  
  enum {
    outer = Index / DstXprType::InnerSizeAtCompileTime,
    inner = Index % DstXprType::InnerSizeAtCompileTime,
    SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
    DstAlignment = Kernel::AssignmentTraits::DstAlignment
  };

  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
    enum { NextIndex = Index + unpacket_traits<PacketType>::size };
    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

template<typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling
{
  typedef typename Kernel::PacketType PacketType;
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
  {
    kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
    enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
    copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel, outer);
  }
};

template<typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { }
};

/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/

// dense_assignment_loop is based on assign_impl

template<typename Kernel,
         int Traversal = Kernel::AssignmentTraits::Traversal,
         int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;

/************************
*** Default traversal ***
************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
  EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel)
  {
    for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
      for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
        kernel.assignCoeffByOuterInner(outer, inner);
      }
    }
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;

    const Index outerSize = kernel.outerSize();
    for(Index outer = 0; outer < outerSize; ++outer)
      copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
  }
};

/***************************
*** Linear vectorization ***
***************************/


// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts

template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
  // if IsAligned = true, then do nothing
  template <typename Kernel>
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {}
};

template <>
struct unaligned_dense_assignment_loop<false>
{
  // MSVC must not inline this functions. If it does, it fails to optimize the
  // packet access path.
  // FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
  template <typename Kernel>
  static EIGEN_DONT_INLINE void run(Kernel &kernel,
                                    Index start,
                                    Index end)
#else
  template <typename Kernel>
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
                                      Index start,
                                      Index end)
#endif
  {
    for (Index index = start; index < end; ++index)
      kernel.assignCoeff(index);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    const Index size = kernel.size();
    typedef typename Kernel::Scalar Scalar;
    typedef typename Kernel::PacketType PacketType;
    enum {
      requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment,
      packetSize = unpacket_traits<PacketType>::size,
      dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
      dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
                                                            : int(Kernel::AssignmentTraits::DstAlignment),
      srcAlignment = Kernel::AssignmentTraits::JointAlignment
    };
    const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(kernel.dstDataPtr(), size);
    const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;

    unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);

    for(Index index = alignedStart; index < alignedEnd; index += packetSize)
      kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);

    unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    typedef typename Kernel::PacketType PacketType;
    
    enum { size = DstXprType::SizeAtCompileTime,
           packetSize =unpacket_traits<PacketType>::size,
           alignedSize = (size/packetSize)*packetSize };

    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
  }
};

/**************************
*** Inner vectorization ***
**************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
  typedef typename Kernel::PacketType PacketType;
  enum {
    SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
    DstAlignment = Kernel::AssignmentTraits::DstAlignment
  };
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    const Index innerSize = kernel.innerSize();
    const Index outerSize = kernel.outerSize();
    const Index packetSize = unpacket_traits<PacketType>::size;
    for(Index outer = 0; outer < outerSize; ++outer)
      for(Index inner = 0; inner < innerSize; inner+=packetSize)
        kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    typedef typename Kernel::AssignmentTraits Traits;
    const Index outerSize = kernel.outerSize();
    for(Index outer = 0; outer < outerSize; ++outer)
      copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime,
                                                   Traits::SrcAlignment, Traits::DstAlignment>::run(kernel, outer);
  }
};

/***********************
*** Linear traversal ***
***********************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    const Index size = kernel.size();
    for(Index i = 0; i < size; ++i)
      kernel.assignCoeff(i);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

/**************************
*** Slice vectorization ***
***************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::Scalar Scalar;
    typedef typename Kernel::PacketType PacketType;
    enum {
      packetSize = unpacket_traits<PacketType>::size,
      requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment),
      alignable = packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar),
      dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
      dstAlignment = alignable ? int(requestedAlignment)
                               : int(Kernel::AssignmentTraits::DstAlignment)
    };
    const Scalar *dst_ptr = kernel.dstDataPtr();
    if((!bool(dstIsAligned)) && (UIntPtr(dst_ptr) % sizeof(Scalar))>0)
    {
      // the pointer is not aligend-on scalar, so alignment is not possible
      return dense_assignment_loop<Kernel,DefaultTraversal,NoUnrolling>::run(kernel);
    }
    const Index packetAlignedMask = packetSize - 1;
    const Index innerSize = kernel.innerSize();
    const Index outerSize = kernel.outerSize();
    const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
    Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);

    for(Index outer = 0; outer < outerSize; ++outer)
    {
      const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
      // do the non-vectorizable part of the assignment
      for(Index inner = 0; inner<alignedStart ; ++inner)
        kernel.assignCoeffByOuterInner(outer, inner);

      // do the vectorizable part of the assignment
      for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
        kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);

      // do the non-vectorizable part of the assignment
      for(Index inner = alignedEnd; inner<innerSize ; ++inner)
        kernel.assignCoeffByOuterInner(outer, inner);

      alignedStart = numext::mini((alignedStart+alignedStep)%packetSize, innerSize);
    }
  }
};

#if EIGEN_UNALIGNED_VECTORIZE
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling>
{
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    typedef typename Kernel::PacketType PacketType;

    enum { size = DstXprType::InnerSizeAtCompileTime,
           packetSize =unpacket_traits<PacketType>::size,
           vectorizableSize = (size/packetSize)*packetSize };

    for(Index outer = 0; outer < kernel.outerSize(); ++outer)
    {
      copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, vectorizableSize, 0, 0>::run(kernel, outer);
      copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, vectorizableSize, size>::run(kernel, outer);
    }
  }
};
#endif


/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/

// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
  typedef typename DstEvaluatorTypeT::XprType DstXprType;
  typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
  
  typedef DstEvaluatorTypeT DstEvaluatorType;
  typedef SrcEvaluatorTypeT SrcEvaluatorType;
  typedef typename DstEvaluatorType::Scalar Scalar;
  typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
  typedef typename AssignmentTraits::PacketType PacketType;
  
  
  EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
    : m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
  {
    #ifdef EIGEN_DEBUG_ASSIGN
    AssignmentTraits::debug();
    #endif
  }
  
  EIGEN_DEVICE_FUNC Index size() const        { return m_dstExpr.size(); }
  EIGEN_DEVICE_FUNC Index innerSize() const   { return m_dstExpr.innerSize(); }
  EIGEN_DEVICE_FUNC Index outerSize() const   { return m_dstExpr.outerSize(); }
  EIGEN_DEVICE_FUNC Index rows() const        { return m_dstExpr.rows(); }
  EIGEN_DEVICE_FUNC Index cols() const        { return m_dstExpr.cols(); }
  EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); }
  
  EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; }
  EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; }
  
  /// Assign src(row,col) to dst(row,col) through the assignment functor.
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col)
  {
    m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
  }
  
  /// \sa assignCoeff(Index,Index)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index)
  {
    m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
  }
  
  /// \sa assignCoeff(Index,Index)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner)
  {
    Index row = rowIndexByOuterInner(outer, inner); 
    Index col = colIndexByOuterInner(outer, inner); 
    assignCoeff(row, col);
  }
  
  
  template<int StoreMode, int LoadMode, typename PacketType>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col)
  {
    m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode,PacketType>(row,col));
  }
  
  template<int StoreMode, int LoadMode, typename PacketType>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index)
  {
    m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode,PacketType>(index));
  }
  
  template<int StoreMode, int LoadMode, typename PacketType>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner)
  {
    Index row = rowIndexByOuterInner(outer, inner); 
    Index col = colIndexByOuterInner(outer, inner);
    assignPacket<StoreMode,LoadMode,PacketType>(row, col);
  }
  
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner)
  {
    typedef typename DstEvaluatorType::ExpressionTraits Traits;
    return int(Traits::RowsAtCompileTime) == 1 ? 0
      : int(Traits::ColsAtCompileTime) == 1 ? inner
      : int(DstEvaluatorType::Flags)&RowMajorBit ? outer
      : inner;
  }

  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner)
  {
    typedef typename DstEvaluatorType::ExpressionTraits Traits;
    return int(Traits::ColsAtCompileTime) == 1 ? 0
      : int(Traits::RowsAtCompileTime) == 1 ? inner
      : int(DstEvaluatorType::Flags)&RowMajorBit ? inner
      : outer;
  }

  EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const
  {
    return m_dstExpr.data();
  }
  
protected:
  DstEvaluatorType& m_dst;
  const SrcEvaluatorType& m_src;
  const Functor &m_functor;
  // TODO find a way to avoid the needs of the original expression
  DstXprType& m_dstExpr;
};

/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/

template<typename DstXprType,typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const Functor &/*func*/)
{
  EIGEN_ONLY_USED_FOR_DEBUG(dst);
  EIGEN_ONLY_USED_FOR_DEBUG(src);
  eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}

template<typename DstXprType,typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::assign_op<T1,T2> &/*func*/)
{
  Index dstRows = src.rows();
  Index dstCols = src.cols();
  if(((dst.rows()!=dstRows) || (dst.cols()!=dstCols)))
    dst.resize(dstRows, dstCols);
  eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}

template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
  typedef evaluator<DstXprType> DstEvaluatorType;
  typedef evaluator<SrcXprType> SrcEvaluatorType;

  SrcEvaluatorType srcEvaluator(src);

  // NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
  // we need to resize the destination after the source evaluator has been created.
  resize_if_allowed(dst, src, func);

  DstEvaluatorType dstEvaluator(dst);
    
  typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
  Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());

  dense_assignment_loop<Kernel>::run(kernel);
}

template<typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
  call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}

/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/

// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template<typename DstShape, typename SrcShape> struct AssignmentKind;

// Assignement kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};

template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
    
// This is the main assignment class
template< typename DstXprType, typename SrcXprType, typename Functor,
          typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
          typename EnableIf = void>
struct Assignment;


// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition.
// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to "assume-aliasing" such that Assignment
// does not has to bother about these annoying details.

template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src)
{
  call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(const Dst& dst, const Src& src)
{
  call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
                     
// Deal with "assume-aliasing"
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
  typename plain_matrix_type<Src>::type tmp(src);
  call_assignment_no_alias(dst, tmp, func);
}

template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<!evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
  call_assignment_no_alias(dst, src, func);
}

// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
  call_assignment_no_alias(dst.expression(), src, func);
}


template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
  enum {
    NeedToTranspose = (    (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
                        || (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)
                      ) && int(Dst::SizeAtCompileTime) != 1
  };

  typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
  typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
  ActualDstType actualDst(dst);
  
  // TODO check whether this is the right place to perform these checks:
  EIGEN_STATIC_ASSERT_LVALUE(Dst)
  EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
  EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
  
  Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src)
{
  call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}

template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
{
  // TODO check whether this is the right place to perform these checks:
  EIGEN_STATIC_ASSERT_LVALUE(Dst)
  EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src)
  EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar);

  Assignment<Dst,Src,Func>::run(dst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
{
  call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}

// forward declaration
template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);

// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak>
{
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
  {
#ifndef EIGEN_NO_DEBUG
    internal::check_for_aliasing(dst, src);
#endif
    
    call_dense_assignment_loop(dst, src, func);
  }
};

// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak>
{
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);

    eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
    src.evalTo(dst);
  }

  // NOTE The following two functions are templated to avoid their instanciation if not needed
  //      This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
  template<typename SrcScalarType>
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);

    eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
    src.addTo(dst);
  }

  template<typename SrcScalarType>
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);

    eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
    src.subTo(dst);
  }
};

} // namespace internal

} // end namespace Eigen

#endif // EIGEN_ASSIGN_EVALUATOR_H