range_map_unittest.cc 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// range_map_unittest.cc: Unit tests for RangeMap
//
// Author: Mark Mentovai


#include <limits.h>
#include <stdio.h>

#include "processor/range_map-inl.h"

#include "common/scoped_ptr.h"
#include "processor/linked_ptr.h"
#include "processor/logging.h"

namespace {


using google_breakpad::linked_ptr;
using google_breakpad::scoped_ptr;
using google_breakpad::RangeMap;


// A CountedObject holds an int.  A global (not thread safe!) count of
// allocated CountedObjects is maintained to help test memory management.
class CountedObject {
 public:
  explicit CountedObject(int id) : id_(id) { ++count_; }
  ~CountedObject() { --count_; }

  static int count() { return count_; }
  int id() const { return id_; }

 private:
  static int count_;
  int id_;
};

int CountedObject::count_;


typedef int AddressType;
typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap;


// RangeTest contains data to use for store and retrieve tests.  See
// RunTests for descriptions of the tests.
struct RangeTest {
  // Base address to use for test
  AddressType address;

  // Size of range to use for test
  AddressType size;

  // Unique ID of range - unstorable ranges must have unique IDs too
  int id;

  // Whether this range is expected to be stored successfully or not
  bool expect_storable;
};


// A RangeTestSet encompasses multiple RangeTests, which are run in
// sequence on the same RangeMap.
struct RangeTestSet {
  // An array of RangeTests
  const RangeTest *range_tests;

  // The number of tests in the set
  unsigned int range_test_count;
};


// StoreTest uses the data in a RangeTest and calls StoreRange on the
// test RangeMap.  It returns true if the expected result occurred, and
// false if something else happened.
static bool StoreTest(TestMap *range_map, const RangeTest *range_test) {
  linked_ptr<CountedObject> object(new CountedObject(range_test->id));
  bool stored = range_map->StoreRange(range_test->address,
                                      range_test->size,
                                      object);

  if (stored != range_test->expect_storable) {
    fprintf(stderr, "FAILED: "
            "StoreRange id %d, expected %s, observed %s\n",
            range_test->id,
            range_test->expect_storable ? "storable" : "not storable",
            stored ? "stored" : "not stored");
    return false;
  }

  return true;
}


// RetrieveTest uses the data in RangeTest and calls RetrieveRange on the
// test RangeMap.  If it retrieves the expected value (which can be no
// map entry at the specified range,) it returns true, otherwise, it returns
// false.  RetrieveTest will check the values around the base address and
// the high address of a range to guard against off-by-one errors.
static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) {
  for (unsigned int side = 0; side <= 1; ++side) {
    // When side == 0, check the low side (base address) of each range.
    // When side == 1, check the high side (base + size) of each range.

    // Check one-less and one-greater than the target address in addition
    // to the target address itself.

    // If the size of the range is only 1, don't check one greater than
    // the base or one less than the high - for a successfully stored
    // range, these tests would erroneously fail because the range is too
    // small.
    AddressType low_offset = -1;
    AddressType high_offset = 1;
    if (range_test->size == 1) {
      if (!side)          // When checking the low side,
        high_offset = 0;  // don't check one over the target.
      else                // When checking the high side,
        low_offset = 0;   // don't check one under the target.
    }

    for (AddressType offset = low_offset; offset <= high_offset; ++offset) {
      AddressType address =
          offset +
          (!side ? range_test->address :
                   range_test->address + range_test->size - 1);

      bool expected_result = false;  // This is correct for tests not stored.
      if (range_test->expect_storable) {
        if (offset == 0)             // When checking the target address,
          expected_result = true;    // test should always succeed.
        else if (offset == -1)       // When checking one below the target,
          expected_result = side;    // should fail low and succeed high.
        else                         // When checking one above the target,
          expected_result = !side;   // should succeed low and fail high.
      }

      linked_ptr<CountedObject> object;
      AddressType retrieved_base = AddressType();
      AddressType retrieved_size = AddressType();
      AddressType retrieved_delta = AddressType();
      bool retrieved = range_map->RetrieveRange(address, &object,
                                                &retrieved_base,
                                                &retrieved_delta,
                                                &retrieved_size);

      bool observed_result = retrieved && object->id() == range_test->id;

      if (observed_result != expected_result) {
        fprintf(stderr, "FAILED: "
                        "RetrieveRange id %d, side %d, offset %d, "
                        "expected %s, observed %s\n",
                        range_test->id,
                        side,
                        offset,
                        expected_result ? "true" : "false",
                        observed_result ? "true" : "false");
        return false;
      }

      // If a range was successfully retrieved, check that the returned
      // bounds match the range as stored.
      if (observed_result == true &&
          (retrieved_base != range_test->address ||
           retrieved_size != range_test->size)) {
        fprintf(stderr, "FAILED: "
                        "RetrieveRange id %d, side %d, offset %d, "
                        "expected base/size %d/%d, observed %d/%d\n",
                        range_test->id,
                        side,
                        offset,
                        range_test->address, range_test->size,
                        retrieved_base, retrieved_size);
        return false;
      }

      // Now, check RetrieveNearestRange.  The nearest range is always
      // expected to be different from the test range when checking one
      // less than the low side.
      bool expected_nearest = range_test->expect_storable;
      if (!side && offset < 0)
        expected_nearest = false;

      linked_ptr<CountedObject> nearest_object;
      AddressType nearest_base = AddressType();
      AddressType nearest_delta = AddressType();
      AddressType nearest_size = AddressType();
      bool retrieved_nearest = range_map->RetrieveNearestRange(address,
                                                               &nearest_object,
                                                               &nearest_base,
                                                               &nearest_delta,
                                                               &nearest_size);

      // When checking one greater than the high side, RetrieveNearestRange
      // should usually return the test range.  When a different range begins
      // at that address, though, then RetrieveNearestRange should return the
      // range at the address instead of the test range.
      if (side && offset > 0 && nearest_base == address) {
        expected_nearest = false;
      }

      bool observed_nearest = retrieved_nearest &&
                              nearest_object->id() == range_test->id;

      if (observed_nearest != expected_nearest) {
        fprintf(stderr, "FAILED: "
                        "RetrieveNearestRange id %d, side %d, offset %d, "
                        "expected %s, observed %s\n",
                        range_test->id,
                        side,
                        offset,
                        expected_nearest ? "true" : "false",
                        observed_nearest ? "true" : "false");
        return false;
      }

      // If a range was successfully retrieved, check that the returned
      // bounds match the range as stored.
      if (expected_nearest &&
          (nearest_base != range_test->address ||
           nearest_size != range_test->size)) {
        fprintf(stderr, "FAILED: "
                        "RetrieveNearestRange id %d, side %d, offset %d, "
                        "expected base/size %d/%d, observed %d/%d\n",
                        range_test->id,
                        side,
                        offset,
                        range_test->address, range_test->size,
                        nearest_base, nearest_size);
        return false;
      }
    }
  }

  return true;
}


// Test RetrieveRangeAtIndex, which is supposed to return objects in order
// according to their addresses.  This test is performed by looping through
// the map, calling RetrieveRangeAtIndex for all possible indices in sequence,
// and verifying that each call returns a different object than the previous
// call, and that ranges are returned with increasing base addresses.  Returns
// false if the test fails.
static bool RetrieveIndexTest(TestMap *range_map, int set) {
  linked_ptr<CountedObject> object;
  CountedObject *last_object = NULL;
  AddressType last_base = 0;

  int object_count = range_map->GetCount();
  for (int object_index = 0; object_index < object_count; ++object_index) {
    AddressType base;
    if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base,
                                         NULL /* delta */, NULL /* size */)) {
      fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
              "expected success, observed failure\n",
              set, object_index);
      return false;
    }

    if (!object.get()) {
      fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
              "expected object, observed NULL\n",
              set, object_index);
      return false;
    }

    // It's impossible to do these comparisons unless there's a previous
    // object to compare against.
    if (last_object) {
      // The object must be different from the last one.
      if (object->id() == last_object->id()) {
        fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
                "expected different objects, observed same objects (%d)\n",
                set, object_index, object->id());
        return false;
      }

      // Each object must have a base greater than the previous object's base.
      if (base <= last_base) {
        fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
                "expected different bases, observed same bases (%d)\n",
                set, object_index, base);
        return false;
      }
    }

    last_object = object.get();
    last_base = base;
  }

  // Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that
  // are too high.
  if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL /* base */,
                                      NULL /* delta */, NULL /* size */)) {
    fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), "
            "expected failure, observed success\n",
            set, object_count);
    return false;
  }

  return true;
}

// Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex().
// Bug info: RetrieveRangeAtIndex() previously retrieves the high address of
// entry, however, it is supposed to retrieve the base address of entry as
// stated in the comment in range_map.h.
static bool RetriveAtIndexTest2() {
  scoped_ptr<TestMap> range_map(new TestMap());

  // Store ranges with base address = 2 * object_id:
  const int range_size = 2;
  for (int object_id = 0; object_id < 100; ++object_id) {
    linked_ptr<CountedObject> object(new CountedObject(object_id));
    int base_address = 2 * object_id;
    range_map->StoreRange(base_address, range_size, object);
  }

  linked_ptr<CountedObject> object;
  int object_count = range_map->GetCount();
  for (int object_index = 0; object_index < object_count; ++object_index) {
    AddressType base;
    if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base,
                                         NULL /* delta */, NULL /* size */)) {
      fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, "
              "expected success, observed failure\n", object_index);
      return false;
    }

    int expected_base = 2 * object->id();
    if (base != expected_base) {
      fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, "
              "expected base %d, observed base %d",
              object_index, expected_base, base);
      return false;
    }
  }

  return true;
}


// RunTests runs a series of test sets.
static bool RunTests() {
  // These tests will be run sequentially.  The first set of tests exercises
  // most functions of RangeTest, and verifies all of the bounds-checking.
  const RangeTest range_tests_0[] = {
    { INT_MIN,     16,      1,  true },   // lowest possible range
    { -2,          5,       2,  true },   // a range through zero
    { INT_MAX - 9, 11,      3,  false },  // tests anti-overflow
    { INT_MAX - 9, 10,      4,  true },   // highest possible range
    { 5,           0,       5,  false },  // tests anti-zero-size
    { 5,           1,       6,  true },   // smallest possible range
    { -20,         15,      7,  true },   // entirely negative

    { 10,          10,      10, true },   // causes the following tests to fail
    { 9,           10,      11, false },  // one-less base, one-less high
    { 9,           11,      12, false },  // one-less base, identical high
    { 9,           12,      13, false },  // completely contains existing
    { 10,          9,       14, false },  // identical base, one-less high
    { 10,          10,      15, false },  // exactly identical to existing range
    { 10,          11,      16, false },  // identical base, one-greater high
    { 11,          8,       17, false },  // contained completely within
    { 11,          9,       18, false },  // one-greater base, identical high
    { 11,          10,      19, false },  // one-greater base, one-greater high
    { 9,           2,       20, false },  // overlaps bottom by one
    { 10,          1,       21, false },  // overlaps bottom by one, contained
    { 19,          1,       22, false },  // overlaps top by one, contained
    { 19,          2,       23, false },  // overlaps top by one

    { 9,           1,       24, true },   // directly below without overlap
    { 20,          1,       25, true },   // directly above without overlap

    { 6,           3,       26, true },   // exactly between two ranges, gapless
    { 7,           3,       27, false },  // tries to span two ranges
    { 7,           5,       28, false },  // tries to span three ranges
    { 4,           20,      29, false },  // tries to contain several ranges

    { 30,          50,      30, true },
    { 90,          25,      31, true },
    { 35,          65,      32, false },  // tries to span two noncontiguous
    { 120,         10000,   33, true },   // > 8-bit
    { 20000,       20000,   34, true },   // > 8-bit
    { 0x10001,     0x10001, 35, true },   // > 16-bit

    { 27,          -1,      36, false }   // tests high < base
  };

  // Attempt to fill the entire space.  The entire space must be filled with
  // three stores because AddressType is signed for these tests, so RangeMap
  // treats the size as signed and rejects sizes that appear to be negative.
  // Even if these tests were run as unsigned, two stores would be needed
  // to fill the space because the entire size of the space could only be
  // described by using one more bit than would be present in AddressType.
  const RangeTest range_tests_1[] = {
    { INT_MIN, INT_MAX, 50, true },   // From INT_MIN to -2, inclusive
    { -1,      2,       51, true },   // From -1 to 0, inclusive
    { 1,       INT_MAX, 52, true },   // From 1 to INT_MAX, inclusive
    { INT_MIN, INT_MAX, 53, false },  // Can't fill the space twice
    { -1,      2,       54, false },
    { 1,       INT_MAX, 55, false },
    { -3,      6,       56, false },  // -3 to 2, inclusive - spans 3 ranges
  };

  // A light round of testing to verify that RetrieveRange does the right
  // the right thing at the extremities of the range when nothing is stored
  // there.  Checks are forced without storing anything at the extremities
  // by setting size = 0.
  const RangeTest range_tests_2[] = {
    { INT_MIN, 0, 100, false },  // makes RetrieveRange check low end
    { -1,      3, 101, true },
    { INT_MAX, 0, 102, false },  // makes RetrieveRange check high end
  };

  // Similar to the previous test set, but with a couple of ranges closer
  // to the extremities.
  const RangeTest range_tests_3[] = {
    { INT_MIN + 1, 1, 110, true },
    { INT_MAX - 1, 1, 111, true },
    { INT_MIN,     0, 112, false },  // makes RetrieveRange check low end
    { INT_MAX,     0, 113, false }   // makes RetrieveRange check high end
  };

  // The range map is cleared between sets of tests listed here.
  const RangeTestSet range_test_sets[] = {
    { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) },
    { range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) },
    { range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) },
    { range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) },
    { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) }   // Run again
  };

  // Maintain the range map in a pointer so that deletion can be meaningfully
  // tested.
  scoped_ptr<TestMap> range_map(new TestMap());

  // Run all of the test sets in sequence.
  unsigned int range_test_set_count = sizeof(range_test_sets) /
                                      sizeof(RangeTestSet);
  for (unsigned int range_test_set_index = 0;
       range_test_set_index < range_test_set_count;
       ++range_test_set_index) {
    const RangeTest *range_tests =
        range_test_sets[range_test_set_index].range_tests;
    unsigned int range_test_count =
        range_test_sets[range_test_set_index].range_test_count;

    // Run the StoreRange test, which validates StoreRange and initializes
    // the RangeMap with data for the RetrieveRange test.
    int stored_count = 0;  // The number of ranges successfully stored
    for (unsigned int range_test_index = 0;
         range_test_index < range_test_count;
         ++range_test_index) {
      const RangeTest *range_test = &range_tests[range_test_index];
      if (!StoreTest(range_map.get(), range_test))
        return false;

      if (range_test->expect_storable)
        ++stored_count;
    }

    // There should be exactly one CountedObject for everything successfully
    // stored in the RangeMap.
    if (CountedObject::count() != stored_count) {
      fprintf(stderr, "FAILED: "
              "stored object counts don't match, expected %d, observed %d\n",
              stored_count,
              CountedObject::count());

      return false;
    }

    // The RangeMap's own count of objects should also match.
    if (range_map->GetCount() != stored_count) {
      fprintf(stderr, "FAILED: stored object count doesn't match GetCount, "
              "expected %d, observed %d\n",
              stored_count, range_map->GetCount());

      return false;
    }

    // Run the RetrieveRange test
    for (unsigned int range_test_index = 0;
         range_test_index < range_test_count;
         ++range_test_index) {
      const RangeTest *range_test = &range_tests[range_test_index];
      if (!RetrieveTest(range_map.get(), range_test))
        return false;
    }

    if (!RetrieveIndexTest(range_map.get(), range_test_set_index))
      return false;

    // Clear the map between test sets.  If this is the final test set,
    // delete the map instead to test destruction.
    if (range_test_set_index < range_test_set_count - 1)
      range_map->Clear();
    else
      range_map.reset();

    // Test that all stored objects are freed when the RangeMap is cleared
    // or deleted.
    if (CountedObject::count() != 0) {
      fprintf(stderr, "FAILED: "
              "did not free all objects after %s, %d still allocated\n",
              range_test_set_index < range_test_set_count - 1 ? "clear"
                                                              : "delete",
              CountedObject::count());

      return false;
    }
  }

  if (!RetriveAtIndexTest2()) {
    fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n");
    return false;
  }

  return true;
}


}  // namespace


int main(int argc, char **argv) {
  BPLOG_INIT(&argc, &argv);

  return RunTests() ? 0 : 1;
}