ProductEvaluators.h 48.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.


#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H

namespace Eigen {
  
namespace internal {

/** \internal
  * Evaluator of a product expression.
  * Since products require special treatments to handle all possible cases,
  * we simply deffer the evaluation logic to a product_evaluator class
  * which offers more partial specialization possibilities.
  * 
  * \sa class product_evaluator
  */
template<typename Lhs, typename Rhs, int Options>
struct evaluator<Product<Lhs, Rhs, Options> > 
 : public product_evaluator<Product<Lhs, Rhs, Options> >
{
  typedef Product<Lhs, Rhs, Options> XprType;
  typedef product_evaluator<XprType> Base;
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
 
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
// TODO we should apply that rule only if that's really helpful
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
                                               const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
                                               const Product<Lhs, Rhs, DefaultProduct> > >
{
  static const bool value = true;
};
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
                               const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
                               const Product<Lhs, Rhs, DefaultProduct> > >
 : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
{
  typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
                               const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
                               const Product<Lhs, Rhs, DefaultProduct> > XprType;
  typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
    : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
  {}
};


template<typename Lhs, typename Rhs, int DiagIndex>
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> > 
 : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
{
  typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
  typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
    : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
        Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
        xpr.index() ))
  {}
};


// Helper class to perform a matrix product with the destination at hand.
// Depending on the sizes of the factors, there are different evaluation strategies
// as controlled by internal::product_type.
template< typename Lhs, typename Rhs,
          typename LhsShape = typename evaluator_traits<Lhs>::Shape,
          typename RhsShape = typename evaluator_traits<Rhs>::Shape,
          int ProductType = internal::product_type<Lhs,Rhs>::value>
struct generic_product_impl;

template<typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
  static const bool value = true;
};

// This is the default evaluator implementation for products:
// It creates a temporary and call generic_product_impl
template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
  : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
{
  typedef Product<Lhs, Rhs, Options> XprType;
  typedef typename XprType::PlainObject PlainObject;
  typedef evaluator<PlainObject> Base;
  enum {
    Flags = Base::Flags | EvalBeforeNestingBit
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  explicit product_evaluator(const XprType& xpr)
    : m_result(xpr.rows(), xpr.cols())
  {
    ::new (static_cast<Base*>(this)) Base(m_result);
    
// FIXME shall we handle nested_eval here?,
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
//     typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
//     typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
//     typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
//     typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
//     
//     const LhsNested lhs(xpr.lhs());
//     const RhsNested rhs(xpr.rhs());
//   
//     generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);

    generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
  }
  
protected:  
  PlainObject m_result;
};

// The following three shortcuts are enabled only if the scalar types match excatly.
// TODO: we could enable them for different scalar types when the product is not vectorized.

// Dense = Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
  typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
  typedef Product<Lhs,Rhs,Options> SrcXprType;
  static EIGEN_STRONG_INLINE
  void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);
    // FIXME shall we handle nested_eval here?
    generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
  }
};

// Dense += Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
  typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
  typedef Product<Lhs,Rhs,Options> SrcXprType;
  static EIGEN_STRONG_INLINE
  void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
  {
    eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
    // FIXME shall we handle nested_eval here?
    generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
  }
};

// Dense -= Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
  typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
  typedef Product<Lhs,Rhs,Options> SrcXprType;
  static EIGEN_STRONG_INLINE
  void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
  {
    eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
    // FIXME shall we handle nested_eval here?
    generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
  }
};


// Dense ?= scalar * Product
// TODO we should apply that rule if that's really helpful
// for instance, this is not good for inner products
template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
                                           const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
{
  typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
                        const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
                        const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
  static EIGEN_STRONG_INLINE
  void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
  {
    call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
  }
};

//----------------------------------------
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct

template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
                                               const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
  static const bool value = true;
};

template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
                                               const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
  static const bool value = true;
};

template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
struct assignment_from_xpr_op_product
{
  template<typename SrcXprType, typename InitialFunc>
  static EIGEN_STRONG_INLINE
  void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
  {
    call_assignment_no_alias(dst, src.lhs(), Func1());
    call_assignment_no_alias(dst, src.rhs(), Func2());
  }
};

#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
  template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
  struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
                                            const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
    : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
  {}

EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);

EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);

//----------------------------------------

template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
  template<typename Dst>
  static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
};


/***********************************************************************
*  Implementation of outer dense * dense vector product
***********************************************************************/

// Column major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
{
  evaluator<Rhs> rhsEval(rhs);
  typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
  // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
  // FIXME not very good if rhs is real and lhs complex while alpha is real too
  const Index cols = dst.cols();
  for (Index j=0; j<cols; ++j)
    func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
}

// Row major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
{
  evaluator<Lhs> lhsEval(lhs);
  typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
  // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
  // FIXME not very good if lhs is real and rhs complex while alpha is real too
  const Index rows = dst.rows();
  for (Index i=0; i<rows; ++i)
    func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
}

template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
{
  template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
  struct set  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived()  = src; } };
  struct add  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
  struct sub  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
  struct adds {
    Scalar m_scale;
    explicit adds(const Scalar& s) : m_scale(s) {}
    template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
      dst.const_cast_derived() += m_scale * src;
    }
  };
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
  }
  
};


// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
template<typename Lhs, typename Rhs, typename Derived>
struct generic_product_impl_base
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }

  template<typename Dst>
  static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }

  template<typename Dst>
  static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }

};

template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
  : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
  typedef typename nested_eval<Lhs,1>::type LhsNested;
  typedef typename nested_eval<Rhs,1>::type RhsNested;
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
  typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;

  template<typename Dest>
  static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    LhsNested actual_lhs(lhs);
    RhsNested actual_rhs(rhs);
    internal::gemv_dense_selector<Side,
                            (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
                            bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
                           >::run(actual_lhs, actual_rhs, dst, alpha);
  }
};

template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> 
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    // Same as: dst.noalias() = lhs.lazyProduct(rhs);
    // but easier on the compiler side
    call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    // dst.noalias() += lhs.lazyProduct(rhs);
    call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
  }
  
  template<typename Dst>
  static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    // dst.noalias() -= lhs.lazyProduct(rhs);
    call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
  }
  
//   template<typename Dst>
//   static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
//   { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
};

// This specialization enforces the use of a coefficient-based evaluation strategy
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
  : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};

// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.

template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;

template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;

template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
    : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
  typedef Product<Lhs, Rhs, LazyProduct> XprType;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  explicit product_evaluator(const XprType& xpr)
    : m_lhs(xpr.lhs()),
      m_rhs(xpr.rhs()),
      m_lhsImpl(m_lhs),     // FIXME the creation of the evaluator objects should result in a no-op, but check that!
      m_rhsImpl(m_rhs),     //       Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
                            //       or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
      m_innerDim(xpr.lhs().cols())
  {
    EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
    EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
    EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
#if 0
    std::cerr << "LhsOuterStrideBytes=  " << LhsOuterStrideBytes << "\n";
    std::cerr << "RhsOuterStrideBytes=  " << RhsOuterStrideBytes << "\n";
    std::cerr << "LhsAlignment=         " << LhsAlignment << "\n";
    std::cerr << "RhsAlignment=         " << RhsAlignment << "\n";
    std::cerr << "CanVectorizeLhs=      " << CanVectorizeLhs << "\n";
    std::cerr << "CanVectorizeRhs=      " << CanVectorizeRhs << "\n";
    std::cerr << "CanVectorizeInner=    " << CanVectorizeInner << "\n";
    std::cerr << "EvalToRowMajor=       " << EvalToRowMajor << "\n";
    std::cerr << "Alignment=            " << Alignment << "\n";
    std::cerr << "Flags=                " << Flags << "\n";
#endif
  }

  // Everything below here is taken from CoeffBasedProduct.h

  typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
  typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
  
  typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
  typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;

  typedef evaluator<LhsNestedCleaned> LhsEtorType;
  typedef evaluator<RhsNestedCleaned> RhsEtorType;

  enum {
    RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
    ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
    InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
    MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
  };

  typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
  typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;

  enum {
      
    LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
    RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
    CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
                  : InnerSize == Dynamic ? HugeCost
                  : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
                    + (InnerSize - 1) * NumTraits<Scalar>::AddCost,

    Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
    
    LhsFlags = LhsEtorType::Flags,
    RhsFlags = RhsEtorType::Flags,
    
    LhsRowMajor = LhsFlags & RowMajorBit,
    RhsRowMajor = RhsFlags & RowMajorBit,

    LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
    RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,

    // Here, we don't care about alignment larger than the usable packet size.
    LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
    RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
      
    SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,

    CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
    CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),

    EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
                    : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
                    : (bool(RhsRowMajor) && !CanVectorizeLhs),

    Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
          | (EvalToRowMajor ? RowMajorBit : 0)
          // TODO enable vectorization for mixed types
          | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
          | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
          
    LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
    RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),

    Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
              : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
              : 0,

    /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
     * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
     * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
     * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
     */
    CanVectorizeInner =    SameType
                        && LhsRowMajor
                        && (!RhsRowMajor)
                        && (LhsFlags & RhsFlags & ActualPacketAccessBit)
                        && (InnerSize % packet_traits<Scalar>::size == 0)
  };
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
  {
    return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
  }

  /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
   * which is why we don't set the LinearAccessBit.
   * TODO: this seems possible when the result is a vector
   */
  EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
  {
    const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
    const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
    return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
  }

  template<int LoadMode, typename PacketType>
  const PacketType packet(Index row, Index col) const
  {
    PacketType res;
    typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
                                     Unroll ? int(InnerSize) : Dynamic,
                                     LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
    PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
    return res;
  }

  template<int LoadMode, typename PacketType>
  const PacketType packet(Index index) const
  {
    const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
    const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
    return packet<LoadMode,PacketType>(row,col);
  }

protected:
  typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
  typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
  
  LhsEtorType m_lhsImpl;
  RhsEtorType m_rhsImpl;

  // TODO: Get rid of m_innerDim if known at compile time
  Index m_innerDim;
};

template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
  : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
{
  typedef Product<Lhs, Rhs, DefaultProduct> XprType;
  typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
  typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
  enum {
    Flags = Base::Flags | EvalBeforeNestingBit
  };
  EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
    : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
  {}
};

/****************************************
*** Coeff based product, Packet path  ***
****************************************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
  {
    etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
    res =  pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
  }
};

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
  {
    etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
    res =  pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
  {
    res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
  {
    res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
  {
    res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
  {
    res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
  {
    res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
    for(Index i = 0; i < innerDim; ++i)
      res =  pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
  {
    res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
    for(Index i = 0; i < innerDim; ++i)
      res =  pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
  }
};


/***************************************************************************
* Triangular products
***************************************************************************/
template<int Mode, bool LhsIsTriangular,
         typename Lhs, bool LhsIsVector,
         typename Rhs, bool RhsIsVector>
struct triangular_product_impl;

template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
  : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
        ::run(dst, lhs.nestedExpression(), rhs, alpha);
  }
};

template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
  }
};


/***************************************************************************
* SelfAdjoint products
***************************************************************************/
template <typename Lhs, int LhsMode, bool LhsIsVector,
          typename Rhs, int RhsMode, bool RhsIsVector>
struct selfadjoint_product_impl;

template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
  : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
  }
};

template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
  }
};


/***************************************************************************
* Diagonal products
***************************************************************************/
  
template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
struct diagonal_product_evaluator_base
  : evaluator_base<Derived>
{
   typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
public:
  enum {
    CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
    
    MatrixFlags = evaluator<MatrixType>::Flags,
    DiagFlags = evaluator<DiagonalType>::Flags,
    _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
    _ScalarAccessOnDiag =  !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
                           ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
    _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
    // FIXME currently we need same types, but in the future the next rule should be the one
    //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
    _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
    _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
    Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
    Alignment = evaluator<MatrixType>::Alignment,

    AsScalarProduct =     (DiagonalType::SizeAtCompileTime==1)
                      ||  (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
                      ||  (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
  };
  
  diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
    : m_diagImpl(diag), m_matImpl(mat)
  {
    EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
    EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
  }
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
  {
    if(AsScalarProduct)
      return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
    else
      return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
  }
  
protected:
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
  {
    return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
                          internal::pset1<PacketType>(m_diagImpl.coeff(id)));
  }
  
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
  {
    enum {
      InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
      DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
    };
    return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
                          m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
  }
  
  evaluator<DiagonalType> m_diagImpl;
  evaluator<MatrixType>   m_matImpl;
};

// diagonal * dense
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
  : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
  typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
  using Base::m_diagImpl;
  using Base::m_matImpl;
  using Base::coeff;
  typedef typename Base::Scalar Scalar;
  
  typedef Product<Lhs, Rhs, ProductKind> XprType;
  typedef typename XprType::PlainObject PlainObject;
  
  enum {
    StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
  };

  EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
    : Base(xpr.rhs(), xpr.lhs().diagonal())
  {
  }
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
  {
    return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
  }
  
#ifndef __CUDACC__
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
  {
    // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
    // See also similar calls below.
    return this->template packet_impl<LoadMode,PacketType>(row,col, row,
                                 typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
  }
  
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet(Index idx) const
  {
    return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
  }
#endif
};

// dense * diagonal
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
  : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
  typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
  using Base::m_diagImpl;
  using Base::m_matImpl;
  using Base::coeff;
  typedef typename Base::Scalar Scalar;
  
  typedef Product<Lhs, Rhs, ProductKind> XprType;
  typedef typename XprType::PlainObject PlainObject;
  
  enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };

  EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
    : Base(xpr.lhs(), xpr.rhs().diagonal())
  {
  }
  
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
  {
    return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
  }
  
#ifndef __CUDACC__
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
  {
    return this->template packet_impl<LoadMode,PacketType>(row,col, col,
                                 typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
  }
  
  template<int LoadMode,typename PacketType>
  EIGEN_STRONG_INLINE PacketType packet(Index idx) const
  {
    return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
  }
#endif
};

/***************************************************************************
* Products with permutation matrices
***************************************************************************/

/** \internal
  * \class permutation_matrix_product
  * Internal helper class implementing the product between a permutation matrix and a matrix.
  * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
  */
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct permutation_matrix_product;

template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{
    typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
    typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;

    template<typename Dest, typename PermutationType>
    static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
    {
      MatrixType mat(xpr);
      const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
      // FIXME we need an is_same for expression that is not sensitive to constness. For instance
      // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
      //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
      if(is_same_dense(dst, mat))
      {
        // apply the permutation inplace
        Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
        mask.fill(false);
        Index r = 0;
        while(r < perm.size())
        {
          // search for the next seed
          while(r<perm.size() && mask[r]) r++;
          if(r>=perm.size())
            break;
          // we got one, let's follow it until we are back to the seed
          Index k0 = r++;
          Index kPrev = k0;
          mask.coeffRef(k0) = true;
          for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
          {
                  Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
            .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
                       (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));

            mask.coeffRef(k) = true;
            kPrev = k;
          }
        }
      }
      else
      {
        for(Index i = 0; i < n; ++i)
        {
          Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
               (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)

          =

          Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
               (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
        }
      }
    }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
  {
    permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
  {
    permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
  {
    permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
  {
    permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
  }
};


/***************************************************************************
* Products with transpositions matrices
***************************************************************************/

// FIXME could we unify Transpositions and Permutation into a single "shape"??

/** \internal
  * \class transposition_matrix_product
  * Internal helper class implementing the product between a permutation matrix and a matrix.
  */
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct transposition_matrix_product
{
  typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
  typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
  
  template<typename Dest, typename TranspositionType>
  static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
  {
    MatrixType mat(xpr);
    typedef typename TranspositionType::StorageIndex StorageIndex;
    const Index size = tr.size();
    StorageIndex j = 0;

    if(!is_same_dense(dst,mat))
      dst = mat;

    for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
      if(Index(j=tr.coeff(k))!=k)
      {
        if(Side==OnTheLeft)        dst.row(k).swap(dst.row(j));
        else if(Side==OnTheRight)  dst.col(k).swap(dst.col(j));
      }
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
  {
    transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
  {
    transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
  }
};


template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
  {
    transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
  }
};

template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
{
  template<typename Dest>
  static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
  {
    transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PRODUCT_EVALUATORS_H