magic_square_and_cards.cs 3.21 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.ConstraintSolver;


public class MagicSquareAndCards
{

  /**
   *
   * Magic squares and cards problem.
   *
   * Martin Gardner (July 1971)
   * """
   * Allowing duplicates values, what is the largest constant sum for an order-3
   * magic square that can be formed with nine cards from the deck.
   * """
   *
   *
   * Also see http://www.hakank.org/or-tools/magic_square_and_cards.py
   *
   */
  private static void Solve(int n=3)
  {

    Solver solver = new Solver("MagicSquareAndCards");

    IEnumerable<int> RANGE = Enumerable.Range(0, n);


    //
    // Decision variables
    //
    IntVar[,] x =  solver.MakeIntVarMatrix(n, n, 1, 13, "x");
    IntVar[] x_flat = x.Flatten();

    IntVar s = solver.MakeIntVar(1, 13*4, "s");
    IntVar[] counts = solver.MakeIntVarArray(14, 0, 4, "counts");

    //
    // Constraints
    //

    solver.Add(x_flat.Distribute(counts));

    // the standard magic square constraints (sans all_different)
    foreach(int i in RANGE) {
      // rows
      solver.Add( (from j in RANGE select x[i,j]).ToArray().Sum() == s);

      // columns
      solver.Add( (from j in RANGE select x[j,i]).ToArray().Sum() == s);
    }

    // diagonals
    solver.Add( (from i in RANGE select x[i,i]).ToArray().Sum() == s);
    solver.Add( (from i in RANGE select x[i,n-i-1]).ToArray().Sum() == s);


    // redundant constraint
    solver.Add(counts.Sum() == n*n);


    //
    // Objective
    //
    OptimizeVar obj = s.Maximize(1);

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x_flat,
                                          Solver.CHOOSE_FIRST_UNBOUND,
                                          Solver.ASSIGN_MAX_VALUE);

    solver.NewSearch(db, obj);

    while (solver.NextSolution()) {
      Console.WriteLine("s: {0}", s.Value());
      Console.Write("counts:");
      for(int i = 0; i < 14; i++) {
        Console.Write(counts[i].Value() + " ");
      }
      Console.WriteLine();
      for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
            Console.Write(x[i,j].Value() + " ");
        }
        Console.WriteLine();
      }
      Console.WriteLine();
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }


  public static void Main(String[] args)
  {
    int n = 3;

    if (args.Length > 0) {
      n = Convert.ToInt32(args[0]);
    }

    Solve(n);
  }
}