cvrptw_with_stop_times_and_resources.cc 9.14 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Capacitated Vehicle Routing Problem with Time Windows, fixed stop times and
// capacitated resources. A stop is defined as consecutive nodes at the same
// location.
// This is an extension to the model in cvrptw.cc so refer to that file for
// more information on the common part of the model. The model implemented here
// limits the number of vehicles which can simultaneously leave or enter a node
// to one.

#include <vector>

#include "absl/strings/str_cat.h"
#include "examples/cpp/cvrptw_lib.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"

using operations_research::ACMRandom;
using operations_research::Assignment;
using operations_research::DefaultRoutingSearchParameters;
using operations_research::GetSeed;
using operations_research::IntervalVar;
using operations_research::IntVar;
using operations_research::LocationContainer;
using operations_research::RandomDemand;
using operations_research::RoutingDimension;
using operations_research::RoutingIndexManager;
using operations_research::RoutingModel;
using operations_research::RoutingNodeIndex;
using operations_research::RoutingSearchParameters;
using operations_research::Solver;
using operations_research::StopServiceTimePlusTransition;

DEFINE_int32(vrp_stops, 25, "Stop locations in the problem.");
DEFINE_int32(vrp_orders_per_stop, 5, "Nodes for each stop.");
DEFINE_int32(vrp_vehicles, 20, "Size of Traveling Salesman Problem instance.");
DEFINE_bool(vrp_use_deterministic_random_seed, false,
            "Use deterministic random seeds.");
DEFINE_string(routing_search_parameters, "",
              "Text proto RoutingSearchParameters (possibly partial) that will "
              "override the DefaultRoutingSearchParameters()");

const char* kTime = "Time";
const char* kCapacity = "Capacity";

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  CHECK_LT(0, FLAGS_vrp_stops) << "Specify an instance size greater than 0.";
  CHECK_LT(0, FLAGS_vrp_orders_per_stop)
      << "Specify an instance size greater than 0.";
  CHECK_LT(0, FLAGS_vrp_vehicles) << "Specify a non-null vehicle fleet size.";
  const int vrp_orders = FLAGS_vrp_stops * FLAGS_vrp_orders_per_stop;
  // Nodes are indexed from 0 to vrp_orders, the starts and ends of the routes
  // are at node 0.
  const RoutingIndexManager::NodeIndex kDepot(0);
  RoutingIndexManager manager(vrp_orders + 1, FLAGS_vrp_vehicles, kDepot);
  RoutingModel routing(manager);

  // Setting up locations.
  const int64 kXMax = 100000;
  const int64 kYMax = 100000;
  const int64 kSpeed = 10;
  LocationContainer locations(kSpeed, FLAGS_vrp_use_deterministic_random_seed);
  for (int stop = 0; stop <= FLAGS_vrp_stops; ++stop) {
    const int num_orders = stop == 0 ? 1 : FLAGS_vrp_orders_per_stop;
    locations.AddRandomLocation(kXMax, kYMax, num_orders);
  }

  // Setting the cost function.
  const int vehicle_cost =
      routing.RegisterTransitCallback([&locations, &manager](int64 i, int64 j) {
        return locations.ManhattanDistance(manager.IndexToNode(i),
                                           manager.IndexToNode(j));
      });
  routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);

  // Adding capacity dimension constraints.
  const int64 kVehicleCapacity = 40;
  const int64 kNullCapacitySlack = 0;
  RandomDemand demand(manager.num_nodes(), kDepot,
                      FLAGS_vrp_use_deterministic_random_seed);
  demand.Initialize();
  routing.AddDimension(
      routing.RegisterTransitCallback([&demand, &manager](int64 i, int64 j) {
        return demand.Demand(manager.IndexToNode(i), manager.IndexToNode(j));
      }),
      kNullCapacitySlack, kVehicleCapacity,
      /*fix_start_cumul_to_zero=*/true, kCapacity);

  // Adding time dimension constraints.
  const int64 kStopTime = 300;
  const int64 kHorizon = 24 * 3600;
  StopServiceTimePlusTransition time(
      kStopTime, locations,
      [&locations](RoutingNodeIndex i, RoutingNodeIndex j) {
        return locations.ManhattanTime(i, j);
      });
  routing.AddDimension(
      routing.RegisterTransitCallback([&time, &manager](int64 i, int64 j) {
        return time.Compute(manager.IndexToNode(i), manager.IndexToNode(j));
      }),
      kHorizon, kHorizon, /*fix_start_cumul_to_zero=*/false, kTime);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(kTime);

  // Adding time windows, for the sake of simplicty same for each stop.
  ACMRandom randomizer(GetSeed(FLAGS_vrp_use_deterministic_random_seed));
  const int64 kTWDuration = 5 * 3600;
  for (int stop = 0; stop < FLAGS_vrp_stops; ++stop) {
    const int64 start = randomizer.Uniform(kHorizon - kTWDuration);
    for (int stop_order = 0; stop_order < FLAGS_vrp_orders_per_stop;
         ++stop_order) {
      const int order = stop * FLAGS_vrp_orders_per_stop + stop_order + 1;
      time_dimension.CumulVar(order)->SetRange(start, start + kTWDuration);
    }
  }

  // Adding resource constraints at order locations.
  Solver* const solver = routing.solver();
  std::vector<IntervalVar*> intervals;
  for (int stop = 0; stop < FLAGS_vrp_stops; ++stop) {
    std::vector<IntervalVar*> stop_intervals;
    for (int stop_order = 0; stop_order < FLAGS_vrp_orders_per_stop;
         ++stop_order) {
      const int order = stop * FLAGS_vrp_orders_per_stop + stop_order + 1;
      IntervalVar* const interval = solver->MakeFixedDurationIntervalVar(
          0, kHorizon, kStopTime, true, absl::StrCat("Order", order));
      intervals.push_back(interval);
      stop_intervals.push_back(interval);
      // Link order and interval.
      IntVar* const order_start = time_dimension.CumulVar(order);
      solver->AddConstraint(
          solver->MakeIsEqualCt(interval->SafeStartExpr(0), order_start,
                                interval->PerformedExpr()->Var()));
      // Make interval performed iff corresponding order has service time.
      // An order has no service time iff it is at the same location as the
      // next order on the route.
      IntVar* const is_null_duration =
          solver
              ->MakeElement(
                  [&locations, order](int64 index) {
                    return locations.SameLocationFromIndex(order, index);
                  },
                  routing.NextVar(order))
              ->Var();
      solver->AddConstraint(
          solver->MakeNonEquality(interval->PerformedExpr(), is_null_duration));
      routing.AddIntervalToAssignment(interval);
      // We are minimizing route durations by minimizing route ends; so we can
      // maximize order starts to pack them together.
      routing.AddVariableMaximizedByFinalizer(order_start);
    }
    // Only one order can happen at the same time at a given location.
    std::vector<int64> location_usage(stop_intervals.size(), 1);
    solver->AddConstraint(solver->MakeCumulative(
        stop_intervals, location_usage, 1, absl::StrCat("Client", stop)));
  }
  // Minimizing route duration.
  for (int vehicle = 0; vehicle < manager.num_vehicles(); ++vehicle) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(vehicle)));
  }

  // Adding penalty costs to allow skipping orders.
  const int64 kPenalty = 100000;
  const RoutingIndexManager::NodeIndex kFirstNodeAfterDepot(1);
  for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
       order < routing.nodes(); ++order) {
    std::vector<int64> orders(1, manager.NodeToIndex(order));
    routing.AddDisjunction(orders, kPenalty);
  }

  // Solve, returns a solution if any (owned by RoutingModel).
  RoutingSearchParameters parameters = DefaultRoutingSearchParameters();
  CHECK(google::protobuf::TextFormat::MergeFromString(
      FLAGS_routing_search_parameters, &parameters));
  const Assignment* solution = routing.SolveWithParameters(parameters);
  if (solution != nullptr) {
    DisplayPlan(manager, routing, *solution, /*use_same_vehicle_costs=*/false,
                /*max_nodes_per_group=*/0, /*same_vehicle_cost=*/0,
                routing.GetDimensionOrDie(kCapacity),
                routing.GetDimensionOrDie(kTime));
    LOG(INFO) << "Stop intervals:";
    for (IntervalVar* const interval : intervals) {
      if (solution->PerformedValue(interval)) {
        LOG(INFO) << interval->name() << ": " << solution->StartValue(interval);
      }
    }
  } else {
    LOG(INFO) << "No solution found.";
  }
  return EXIT_SUCCESS;
}