SparseMatrixBase.h 30.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEMATRIXBASE_H
#define EIGEN_SPARSEMATRIXBASE_H

/** \ingroup Sparse_Module
  *
  * \class SparseMatrixBase
  *
  * \brief Base class of any sparse matrices or sparse expressions
  *
  * \tparam Derived
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
  */
template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{
  public:

    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;

    typedef SparseMatrixBase StorageBaseType;
    typedef EigenBase<Derived> Base;
    
    template<typename OtherDerived>
    Derived& operator=(const EigenBase<OtherDerived> &other)
    {
      other.derived().evalTo(derived());
      return derived();
    }
    
//     using Base::operator=;

    enum {

      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
        /**< The number of rows at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */

      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
        /**< The number of columns at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */


      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
                                                   internal::traits<Derived>::ColsAtCompileTime>::ret),
        /**< This is equal to the number of coefficients, i.e. the number of
          * rows times the number of columns, or to \a Dynamic if this is not
          * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */

      MaxRowsAtCompileTime = RowsAtCompileTime,
      MaxColsAtCompileTime = ColsAtCompileTime,

      MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
                                                      MaxColsAtCompileTime>::ret),

      IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
        /**< This is set to true if either the number of rows or the number of
          * columns is known at compile-time to be equal to 1. Indeed, in that case,
          * we are dealing with a column-vector (if there is only one column) or with
          * a row-vector (if there is only one row). */

      Flags = internal::traits<Derived>::Flags,
        /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
          * constructed from this one. See the \ref flags "list of flags".
          */

      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
        /**< This is a rough measure of how expensive it is to read one coefficient from
          * this expression.
          */

      IsRowMajor = Flags&RowMajorBit ? 1 : 0,

      #ifndef EIGEN_PARSED_BY_DOXYGEN
      _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
      #endif
    };

    /* \internal the return type of MatrixBase::conjugate() */
//     typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
//                         const SparseCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Derived>,
//                         const Derived&
//                      >::type ConjugateReturnType;
    /* \internal the return type of MatrixBase::real() */
//     typedef SparseCwiseUnaryOp<internal::scalar_real_op<Scalar>, Derived> RealReturnType;
    /* \internal the return type of MatrixBase::imag() */
//     typedef SparseCwiseUnaryOp<internal::scalar_imag_op<Scalar>, Derived> ImagReturnType;
    /** \internal the return type of MatrixBase::adjoint() */
    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
                        CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
                        Transpose<const Derived>
                     >::type AdjointReturnType;


    typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor> PlainObject;

#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
#   include "../plugins/CommonCwiseUnaryOps.h"
#   include "../plugins/CommonCwiseBinaryOps.h"
#   include "../plugins/MatrixCwiseUnaryOps.h"
#   include "../plugins/MatrixCwiseBinaryOps.h"
#   ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
#     include EIGEN_SPARSEMATRIXBASE_PLUGIN
#   endif
#   undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is the "real scalar" type; if the \a Scalar type is already real numbers
      * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
      * \a Scalar is \a std::complex<T> then RealScalar is \a T.
      *
      * \sa class NumTraits
      */
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** \internal the return type of coeff()
      */
    typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;

    /** \internal Represents a matrix with all coefficients equal to one another*/
    typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;

    /** type of the equivalent square matrix */
    typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
                          EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;

    inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
    inline Derived& derived() { return *static_cast<Derived*>(this); }
    inline Derived& const_cast_derived() const
    { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
#endif // not EIGEN_PARSED_BY_DOXYGEN

    /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
    inline Index rows() const { return derived().rows(); }
    /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
    inline Index cols() const { return derived().cols(); }
    /** \returns the number of coefficients, which is \a rows()*cols().
      * \sa rows(), cols(), SizeAtCompileTime. */
    inline Index size() const { return rows() * cols(); }
    /** \returns the number of nonzero coefficients which is in practice the number
      * of stored coefficients. */
    inline Index nonZeros() const { return derived().nonZeros(); }
    /** \returns true if either the number of rows or the number of columns is equal to 1.
      * In other words, this function returns
      * \code rows()==1 || cols()==1 \endcode
      * \sa rows(), cols(), IsVectorAtCompileTime. */
    inline bool isVector() const { return rows()==1 || cols()==1; }
    /** \returns the size of the storage major dimension,
      * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
    Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
    /** \returns the size of the inner dimension according to the storage order,
      * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
    Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }

    bool isRValue() const { return m_isRValue; }
    Derived& markAsRValue() { m_isRValue = true; return derived(); }

    SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
    
    inline Derived& operator=(const Derived& other)
    {
//       std::cout << "Derived& operator=(const Derived& other)\n";
//       if (other.isRValue())
//         derived().swap(other.const_cast_derived());
//       else
        this->operator=<Derived>(other);
      return derived();
    }
    
    template<typename OtherDerived>
    Derived& operator=(const ReturnByValue<OtherDerived>& other)
    {
      other.evalTo(derived());
      return derived();
    }


    template<typename OtherDerived>
    inline void assignGeneric(const OtherDerived& other)
    {
//       std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
      //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
      eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
                  (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
                  "the transpose operation is supposed to be handled in SparseMatrix::operator=");

      enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };

      const Index outerSize = other.outerSize();
      //typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
      // thanks to shallow copies, we always eval to a tempary
      Derived temp(other.rows(), other.cols());

      temp.reserve(std::max(this->rows(),this->cols())*2);
      for (Index j=0; j<outerSize; ++j)
      {
        temp.startVec(j);
        for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
        {
          Scalar v = it.value();
          if (v!=Scalar(0))
            temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
        }
      }
      temp.finalize();

      derived() = temp.markAsRValue();
    }


    template<typename OtherDerived>
    inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
    {
//       std::cout << typeid(OtherDerived).name() << "\n";
//       std::cout << Flags << " " << OtherDerived::Flags << "\n";
      const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
//       std::cout << "eval transpose = " << transpose << "\n";
      const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
      if ((!transpose) && other.isRValue())
      {
        // eval without temporary
        derived().resize(other.rows(), other.cols());
        derived().setZero();
        derived().reserve(std::max(this->rows(),this->cols())*2);
        for (Index j=0; j<outerSize; ++j)
        {
          derived().startVec(j);
          for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
          {
            Scalar v = it.value();
            if (v!=Scalar(0))
              derived().insertBackByOuterInner(j,it.index()) = v;
          }
        }
        derived().finalize();
      }
      else
      {
        assignGeneric(other.derived());
      }
      return derived();
    }

    template<typename Lhs, typename Rhs>
    inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);

    template<typename Lhs, typename Rhs>
    inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);

    friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
    {
      if (Flags&RowMajorBit)
      {
        for (Index row=0; row<m.outerSize(); ++row)
        {
          Index col = 0;
          for (typename Derived::InnerIterator it(m.derived(), row); it; ++it)
          {
            for ( ; col<it.index(); ++col)
              s << "0 ";
            s << it.value() << " ";
            ++col;
          }
          for ( ; col<m.cols(); ++col)
            s << "0 ";
          s << std::endl;
        }
      }
      else
      {
        if (m.cols() == 1) {
          Index row = 0;
          for (typename Derived::InnerIterator it(m.derived(), 0); it; ++it)
          {
            for ( ; row<it.index(); ++row)
              s << "0" << std::endl;
            s << it.value() << std::endl;
            ++row;
          }
          for ( ; row<m.rows(); ++row)
            s << "0" << std::endl;
        }
        else
        {
          SparseMatrix<Scalar, RowMajorBit> trans = m.derived();
          s << trans;
        }
      }
      return s;
    }

//     const SparseCwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>,Derived> operator-() const;

//     template<typename OtherDerived>
//     const CwiseBinaryOp<internal::scalar_sum_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
//     operator+(const SparseMatrixBase<OtherDerived> &other) const;

//     template<typename OtherDerived>
//     const CwiseBinaryOp<internal::scalar_difference_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
//     operator-(const SparseMatrixBase<OtherDerived> &other) const;

    template<typename OtherDerived>
    Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);

//     template<typename Lhs,typename Rhs>
//     Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other);

    Derived& operator*=(const Scalar& other);
    Derived& operator/=(const Scalar& other);

    #define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
      CwiseBinaryOp< \
        internal::scalar_product_op< \
          typename internal::scalar_product_traits< \
            typename internal::traits<Derived>::Scalar, \
            typename internal::traits<OtherDerived>::Scalar \
          >::ReturnType \
        >, \
        Derived, \
        OtherDerived \
      >

    template<typename OtherDerived>
    EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
    cwiseProduct(const MatrixBase<OtherDerived> &other) const;

//     const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
//     operator*(const Scalar& scalar) const;
//     const SparseCwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, Derived>
//     operator/(const Scalar& scalar) const;

//     inline friend const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
//     operator*(const Scalar& scalar, const SparseMatrixBase& matrix)
//     { return matrix*scalar; }


    // sparse * sparse
    template<typename OtherDerived>
    const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
    operator*(const SparseMatrixBase<OtherDerived> &other) const;

    // sparse * diagonal
    template<typename OtherDerived>
    const SparseDiagonalProduct<Derived,OtherDerived>
    operator*(const DiagonalBase<OtherDerived> &other) const;

    // diagonal * sparse
    template<typename OtherDerived> friend
    const SparseDiagonalProduct<OtherDerived,Derived>
    operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
    { return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }

    /** dense * sparse (return a dense object unless it is an outer product) */
    template<typename OtherDerived> friend
    const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
    operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
    { return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }

    /** sparse * dense (returns a dense object unless it is an outer product) */
    template<typename OtherDerived>
    const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
    operator*(const MatrixBase<OtherDerived> &other) const;

    template<typename OtherDerived>
    Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);

    #ifdef EIGEN2_SUPPORT
    // deprecated
    template<typename OtherDerived>
    typename internal::plain_matrix_type_column_major<OtherDerived>::type
    solveTriangular(const MatrixBase<OtherDerived>& other) const;

    // deprecated
    template<typename OtherDerived>
    void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
//     template<typename OtherDerived>
//     void solveTriangularInPlace(SparseMatrixBase<OtherDerived>& other) const;
    #endif // EIGEN2_SUPPORT

    template<int Mode>
    inline const SparseTriangularView<Derived, Mode> triangularView() const;

    template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
    template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();

    template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
    template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
    RealScalar squaredNorm() const;
    RealScalar norm()  const;
//     const PlainObject normalized() const;
//     void normalize();

    Transpose<Derived> transpose() { return derived(); }
    const Transpose<const Derived> transpose() const { return derived(); }
    // void transposeInPlace();
    const AdjointReturnType adjoint() const { return transpose(); }

    // sub-vector
    SparseInnerVectorSet<Derived,1> row(Index i);
    const SparseInnerVectorSet<Derived,1> row(Index i) const;
    SparseInnerVectorSet<Derived,1> col(Index j);
    const SparseInnerVectorSet<Derived,1> col(Index j) const;
    SparseInnerVectorSet<Derived,1> innerVector(Index outer);
    const SparseInnerVectorSet<Derived,1> innerVector(Index outer) const;

    // set of sub-vectors
    SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size);
    const SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size) const;
    SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size);
    const SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size) const;
    SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize);
    const SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize) const;

//     typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
//     const typename BlockReturnType<Derived>::Type
//     block(int startRow, int startCol, int blockRows, int blockCols) const;
//
//     typename BlockReturnType<Derived>::SubVectorType segment(int start, int size);
//     const typename BlockReturnType<Derived>::SubVectorType segment(int start, int size) const;
//
//     typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size);
//     const typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size) const;
//
//     typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size);
//     const typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size) const;
//
//     template<int BlockRows, int BlockCols>
//     typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
//     template<int BlockRows, int BlockCols>
//     const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;

//     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType start(void);
//     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType start() const;

//     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType end();
//     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType end() const;

//     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType segment(int start);
//     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType segment(int start) const;

//     Diagonal<Derived> diagonal();
//     const Diagonal<Derived> diagonal() const;

//     template<unsigned int Mode> Part<Derived, Mode> part();
//     template<unsigned int Mode> const Part<Derived, Mode> part() const;


//     static const ConstantReturnType Constant(int rows, int cols, const Scalar& value);
//     static const ConstantReturnType Constant(int size, const Scalar& value);
//     static const ConstantReturnType Constant(const Scalar& value);

//     template<typename CustomNullaryOp>
//     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
//     template<typename CustomNullaryOp>
//     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int size, const CustomNullaryOp& func);
//     template<typename CustomNullaryOp>
//     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(const CustomNullaryOp& func);

//     static const ConstantReturnType Zero(int rows, int cols);
//     static const ConstantReturnType Zero(int size);
//     static const ConstantReturnType Zero();
//     static const ConstantReturnType Ones(int rows, int cols);
//     static const ConstantReturnType Ones(int size);
//     static const ConstantReturnType Ones();
//     static const IdentityReturnType Identity();
//     static const IdentityReturnType Identity(int rows, int cols);
//     static const BasisReturnType Unit(int size, int i);
//     static const BasisReturnType Unit(int i);
//     static const BasisReturnType UnitX();
//     static const BasisReturnType UnitY();
//     static const BasisReturnType UnitZ();
//     static const BasisReturnType UnitW();

//     const DiagonalMatrix<Derived> asDiagonal() const;

//     Derived& setConstant(const Scalar& value);
//     Derived& setZero();
//     Derived& setOnes();
//     Derived& setRandom();
//     Derived& setIdentity();

      /** \internal use operator= */
      template<typename DenseDerived>
      void evalTo(MatrixBase<DenseDerived>& dst) const
      {
        dst.setZero();
        for (Index j=0; j<outerSize(); ++j)
          for (typename Derived::InnerIterator i(derived(),j); i; ++i)
            dst.coeffRef(i.row(),i.col()) = i.value();
      }

      Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
      {
        return derived();
      }

    template<typename OtherDerived>
    bool isApprox(const SparseMatrixBase<OtherDerived>& other,
                  RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
    { return toDense().isApprox(other.toDense(),prec); }

    template<typename OtherDerived>
    bool isApprox(const MatrixBase<OtherDerived>& other,
                  RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
    { return toDense().isApprox(other,prec); }
//     bool isMuchSmallerThan(const RealScalar& other,
//                            RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     template<typename OtherDerived>
//     bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
//                            RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

//     bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

//     bool isUpper(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isLower(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

//     template<typename OtherDerived>
//     bool isOrthogonal(const MatrixBase<OtherDerived>& other,
//                       RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
//     bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

//     template<typename OtherDerived>
//     inline bool operator==(const MatrixBase<OtherDerived>& other) const
//     { return (cwise() == other).all(); }

//     template<typename OtherDerived>
//     inline bool operator!=(const MatrixBase<OtherDerived>& other) const
//     { return (cwise() != other).any(); }


//     template<typename NewType>
//     const SparseCwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, Derived> cast() const;

    /** \returns the matrix or vector obtained by evaluating this expression.
      *
      * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
      * a const reference, in order to avoid a useless copy.
      */
    inline const typename internal::eval<Derived>::type eval() const
    { return typename internal::eval<Derived>::type(derived()); }

//     template<typename OtherDerived>
//     void swap(MatrixBase<OtherDerived> const & other);

//     template<unsigned int Added>
//     const SparseFlagged<Derived, Added, 0> marked() const;
//     const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit> lazy() const;

    /** \returns number of elements to skip to pass from one row (resp. column) to another
      * for a row-major (resp. column-major) matrix.
      * Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
      * of the underlying matrix.
      */
//     inline int stride(void) const { return derived().stride(); }

// FIXME
//     ConjugateReturnType conjugate() const;
//     const RealReturnType real() const;
//     const ImagReturnType imag() const;

//     template<typename CustomUnaryOp>
//     const SparseCwiseUnaryOp<CustomUnaryOp, Derived> unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const;

//     template<typename CustomBinaryOp, typename OtherDerived>
//     const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
//     binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;


    Scalar sum() const;
//     Scalar trace() const;

//     typename internal::traits<Derived>::Scalar minCoeff() const;
//     typename internal::traits<Derived>::Scalar maxCoeff() const;

//     typename internal::traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
//     typename internal::traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;

//     template<typename BinaryOp>
//     typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
//     redux(const BinaryOp& func) const;

//     template<typename Visitor>
//     void visit(Visitor& func) const;


//     const SparseCwise<Derived> cwise() const;
//     SparseCwise<Derived> cwise();

//     inline const WithFormat<Derived> format(const IOFormat& fmt) const;

/////////// Array module ///////////
    /*
    bool all(void) const;
    bool any(void) const;

    const VectorwiseOp<Derived,Horizontal> rowwise() const;
    const VectorwiseOp<Derived,Vertical> colwise() const;

    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int size);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();

    template<typename ThenDerived,typename ElseDerived>
    const Select<Derived,ThenDerived,ElseDerived>
    select(const MatrixBase<ThenDerived>& thenMatrix,
           const MatrixBase<ElseDerived>& elseMatrix) const;

    template<typename ThenDerived>
    inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
    select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;

    template<typename ElseDerived>
    inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
    select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;

    template<int p> RealScalar lpNorm() const;
    */


//     template<typename OtherDerived>
//     Scalar dot(const MatrixBase<OtherDerived>& other) const
//     {
//       EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
//       EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
//       EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
//         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
//
//       eigen_assert(derived().size() == other.size());
//       // short version, but the assembly looks more complicated because
//       // of the CwiseBinaryOp iterator complexity
//       // return res = (derived().cwise() * other.derived().conjugate()).sum();
//
//       // optimized, generic version
//       typename Derived::InnerIterator i(derived(),0);
//       typename OtherDerived::InnerIterator j(other.derived(),0);
//       Scalar res = 0;
//       while (i && j)
//       {
//         if (i.index()==j.index())
//         {
// //           std::cerr << i.value() << " * " << j.value() << "\n";
//           res += i.value() * internal::conj(j.value());
//           ++i; ++j;
//         }
//         else if (i.index()<j.index())
//           ++i;
//         else
//           ++j;
//       }
//       return res;
//     }
//
//     Scalar sum() const
//     {
//       Scalar res = 0;
//       for (typename Derived::InnerIterator iter(*this,0); iter; ++iter)
//       {
//         res += iter.value();
//       }
//       return res;
//     }

  protected:

    bool m_isRValue;
};

#endif // EIGEN_SPARSEMATRIXBASE_H