JacobiSVD.h 30.5 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H

namespace internal {
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template<typename MatrixType, int QRPreconditioner,
         bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};

/*** QR preconditioners (R-SVD)
 ***
 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
 *** JacobiSVD which by itself is only able to work on square matrices.
 ***/

enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };

template<typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_should_do_anything
{
  enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
         b = MatrixType::RowsAtCompileTime != Dynamic &&
             MatrixType::ColsAtCompileTime != Dynamic &&
             MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
         ret = !( (QRPreconditioner == NoQRPreconditioner) ||
                  (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
                  (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
  };
};

template<typename MatrixType, int QRPreconditioner, int Case,
         bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct qr_preconditioner_impl {};

template<typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
  static bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
  {
    return false;
  }
};

/*** preconditioner using FullPivHouseholderQR ***/

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
  static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      FullPivHouseholderQR<MatrixType> qr(matrix);
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) svd.m_matrixU = qr.matrixQ();
      if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
      return true;
    }
    return false;
  }
};

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
  static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
                     MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
              TransposeTypeWithSameStorageOrder;
      FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) svd.m_matrixV = qr.matrixQ();
      if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
      return true;
    }
    else return false;
  }
};

/*** preconditioner using ColPivHouseholderQR ***/

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
  static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      ColPivHouseholderQR<MatrixType> qr(matrix);
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
      else if(svd.m_computeThinU) {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
      }
      if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
      return true;
    }
    return false;
  }
};

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
  static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
                     MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
              TransposeTypeWithSameStorageOrder;
      ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
      else if(svd.m_computeThinV) {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
      }
      if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
      return true;
    }
    else return false;
  }
};

/*** preconditioner using HouseholderQR ***/

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
  static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.rows() > matrix.cols())
    {
      HouseholderQR<MatrixType> qr(matrix);
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
      if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
      else if(svd.m_computeThinU) {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
      }
      if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
      return true;
    }
    return false;
  }
};

template<typename MatrixType>
struct qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
  static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
  {
    if(matrix.cols() > matrix.rows())
    {
      typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
                     MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
              TransposeTypeWithSameStorageOrder;
      HouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
      svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
      if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
      else if(svd.m_computeThinV) {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
      }
      if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
      return true;
    }
    else return false;
  }
};

/*** 2x2 SVD implementation
 ***
 *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
 ***/

template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
  typedef typename SVD::Index Index;
  static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
};

template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename SVD::Index Index;
  static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
  {
    Scalar z;
    JacobiRotation<Scalar> rot;
    RealScalar n = sqrt(abs2(work_matrix.coeff(p,p)) + abs2(work_matrix.coeff(q,p)));
    if(n==0)
    {
      z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
      work_matrix.row(p) *= z;
      if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
      z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
      work_matrix.row(q) *= z;
      if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
    }
    else
    {
      rot.c() = conj(work_matrix.coeff(p,p)) / n;
      rot.s() = work_matrix.coeff(q,p) / n;
      work_matrix.applyOnTheLeft(p,q,rot);
      if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
      if(work_matrix.coeff(p,q) != Scalar(0))
      {
        Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
        work_matrix.col(q) *= z;
        if(svd.computeV()) svd.m_matrixV.col(q) *= z;
      }
      if(work_matrix.coeff(q,q) != Scalar(0))
      {
        z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
        work_matrix.row(q) *= z;
        if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
      }
    }
  }
};

template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
                            JacobiRotation<RealScalar> *j_left,
                            JacobiRotation<RealScalar> *j_right)
{
  Matrix<RealScalar,2,2> m;
  m << real(matrix.coeff(p,p)), real(matrix.coeff(p,q)),
       real(matrix.coeff(q,p)), real(matrix.coeff(q,q));
  JacobiRotation<RealScalar> rot1;
  RealScalar t = m.coeff(0,0) + m.coeff(1,1);
  RealScalar d = m.coeff(1,0) - m.coeff(0,1);
  if(t == RealScalar(0))
  {
    rot1.c() = RealScalar(0);
    rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
  }
  else
  {
    RealScalar u = d / t;
    rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + abs2(u));
    rot1.s() = rot1.c() * u;
  }
  m.applyOnTheLeft(0,1,rot1);
  j_right->makeJacobi(m,0,1);
  *j_left  = rot1 * j_right->transpose();
}

} // end namespace internal

/** \ingroup SVD_Module
  *
  *
  * \class JacobiSVD
  *
  * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
  *
  * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
  * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
  *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
  *
  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
  *   \f[ A = U S V^* \f]
  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
  * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
  * and right \em singular \em vectors of \a A respectively.
  *
  * Singular values are always sorted in decreasing order.
  *
  * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
  *
  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
  * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
  * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
  * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
  *
  * Here's an example demonstrating basic usage:
  * \include JacobiSVD_basic.cpp
  * Output: \verbinclude JacobiSVD_basic.out
  * 
  * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
  * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
  * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
  * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
  *
  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
  * terminate in finite (and reasonable) time.
  * 
  * The possible values for QRPreconditioner are:
  * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
  * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
  *     Contrary to other QRs, it doesn't allow computing thin unitaries.
  * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
  *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
  *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
  *     process is more reliable than the optimized bidiagonal SVD iterations.
  * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
  *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
  *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
  *     if QR preconditioning is needed before applying it anyway.
  *
  * \sa MatrixBase::jacobiSvd()
  */
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
{
  public:

    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
      MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
      MatrixOptions = MatrixType::Options
    };

    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
                   MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
            MatrixUType;
    typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
                   MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
            MatrixVType;
    typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
    typedef typename internal::plain_row_type<MatrixType>::type RowType;
    typedef typename internal::plain_col_type<MatrixType>::type ColType;
    typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
                   MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
            WorkMatrixType;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via JacobiSVD::compute(const MatrixType&).
      */
    JacobiSVD()
      : m_isInitialized(false),
        m_isAllocated(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1)
    {}


    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem size.
      * \sa JacobiSVD()
      */
    JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
      : m_isInitialized(false),
        m_isAllocated(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1)
    {
      allocate(rows, cols, computationOptions);
    }

    /** \brief Constructor performing the decomposition of given matrix.
     *
     * \param matrix the matrix to decompose
     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
     *                           #ComputeFullV, #ComputeThinV.
     *
     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
     * available with the (non-default) FullPivHouseholderQR preconditioner.
     */
    JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
      : m_isInitialized(false),
        m_isAllocated(false),
        m_computationOptions(0),
        m_rows(-1), m_cols(-1)
    {
      compute(matrix, computationOptions);
    }

    /** \brief Method performing the decomposition of given matrix using custom options.
     *
     * \param matrix the matrix to decompose
     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
     *                           #ComputeFullV, #ComputeThinV.
     *
     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
     * available with the (non-default) FullPivHouseholderQR preconditioner.
     */
    JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);

    /** \brief Method performing the decomposition of given matrix using current options.
     *
     * \param matrix the matrix to decompose
     *
     * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
     */
    JacobiSVD& compute(const MatrixType& matrix)
    {
      return compute(matrix, m_computationOptions);
    }

    /** \returns the \a U matrix.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
     *
     * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
     *
     * This method asserts that you asked for \a U to be computed.
     */
    const MatrixUType& matrixU() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
      return m_matrixU;
    }

    /** \returns the \a V matrix.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
     *
     * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
     *
     * This method asserts that you asked for \a V to be computed.
     */
    const MatrixVType& matrixV() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
      return m_matrixV;
    }

    /** \returns the vector of singular values.
     *
     * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
     * returned vector has size \a m.  Singular values are always sorted in decreasing order.
     */
    const SingularValuesType& singularValues() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      return m_singularValues;
    }

    /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
    inline bool computeU() const { return m_computeFullU || m_computeThinU; }
    /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
    inline bool computeV() const { return m_computeFullV || m_computeThinV; }

    /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
      * 
      * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
      * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
      */
    template<typename Rhs>
    inline const internal::solve_retval<JacobiSVD, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
      return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
    }

    /** \returns the number of singular values that are not exactly 0 */
    Index nonzeroSingularValues() const
    {
      eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
      return m_nonzeroSingularValues;
    }

    inline Index rows() const { return m_rows; }
    inline Index cols() const { return m_cols; }

  private:
    void allocate(Index rows, Index cols, unsigned int computationOptions);

  protected:
    MatrixUType m_matrixU;
    MatrixVType m_matrixV;
    SingularValuesType m_singularValues;
    WorkMatrixType m_workMatrix;
    bool m_isInitialized, m_isAllocated;
    bool m_computeFullU, m_computeThinU;
    bool m_computeFullV, m_computeThinV;
    unsigned int m_computationOptions;
    Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;

    template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
    friend struct internal::svd_precondition_2x2_block_to_be_real;
    template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
    friend struct internal::qr_preconditioner_impl;
};

template<typename MatrixType, int QRPreconditioner>
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  eigen_assert(rows >= 0 && cols >= 0);

  if (m_isAllocated &&
      rows == m_rows &&
      cols == m_cols &&
      computationOptions == m_computationOptions)
  {
    return;
  }

  m_rows = rows;
  m_cols = cols;
  m_isInitialized = false;
  m_isAllocated = true;
  m_computationOptions = computationOptions;
  m_computeFullU = (computationOptions & ComputeFullU) != 0;
  m_computeThinU = (computationOptions & ComputeThinU) != 0;
  m_computeFullV = (computationOptions & ComputeFullV) != 0;
  m_computeThinV = (computationOptions & ComputeThinV) != 0;
  eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
  eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
              "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
  if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
  {
      eigen_assert(!(m_computeThinU || m_computeThinV) &&
              "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
              "Use the ColPivHouseholderQR preconditioner instead.");
  }
  m_diagSize = std::min(m_rows, m_cols);
  m_singularValues.resize(m_diagSize);
  m_matrixU.resize(m_rows, m_computeFullU ? m_rows
                          : m_computeThinU ? m_diagSize
                          : 0);
  m_matrixV.resize(m_cols, m_computeFullV ? m_cols
                          : m_computeThinV ? m_diagSize
                          : 0);
  m_workMatrix.resize(m_diagSize, m_diagSize);
}

template<typename MatrixType, int QRPreconditioner>
JacobiSVD<MatrixType, QRPreconditioner>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
  allocate(matrix.rows(), matrix.cols(), computationOptions);

  // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
  // only worsening the precision of U and V as we accumulate more rotations
  const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();

  /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */

  if(!internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows>::run(*this, matrix)
  && !internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols>::run(*this, matrix))
  {
    m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
    if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
    if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
    if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
    if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
  }

  /*** step 2. The main Jacobi SVD iteration. ***/

  bool finished = false;
  while(!finished)
  {
    finished = true;

    // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix

    for(Index p = 1; p < m_diagSize; ++p)
    {
      for(Index q = 0; q < p; ++q)
      {
        // if this 2x2 sub-matrix is not diagonal already...
        // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
        // keep us iterating forever.
        using std::max;
        if(max(internal::abs(m_workMatrix.coeff(p,q)),internal::abs(m_workMatrix.coeff(q,p)))
            > max(internal::abs(m_workMatrix.coeff(p,p)),internal::abs(m_workMatrix.coeff(q,q)))*precision)
        {
          finished = false;

          // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
          internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
          JacobiRotation<RealScalar> j_left, j_right;
          internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);

          // accumulate resulting Jacobi rotations
          m_workMatrix.applyOnTheLeft(p,q,j_left);
          if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());

          m_workMatrix.applyOnTheRight(p,q,j_right);
          if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
        }
      }
    }
  }

  /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/

  for(Index i = 0; i < m_diagSize; ++i)
  {
    RealScalar a = internal::abs(m_workMatrix.coeff(i,i));
    m_singularValues.coeffRef(i) = a;
    if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
  }

  /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/

  m_nonzeroSingularValues = m_diagSize;
  for(Index i = 0; i < m_diagSize; i++)
  {
    Index pos;
    RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
    if(maxRemainingSingularValue == RealScalar(0))
    {
      m_nonzeroSingularValues = i;
      break;
    }
    if(pos)
    {
      pos += i;
      std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
      if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
      if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
    }
  }

  m_isInitialized = true;
  return *this;
}

namespace internal {
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
  : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
{
  typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
  EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().rows());

    // A = U S V^*
    // So A^{-1} = V S^{-1} U^*

    Index diagSize = std::min(dec().rows(), dec().cols());
    typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);

    Index nonzeroSingVals = dec().nonzeroSingularValues();
    invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
    invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();

    dst = dec().matrixV().leftCols(diagSize)
        * invertedSingVals.asDiagonal()
        * dec().matrixU().leftCols(diagSize).adjoint()
        * rhs();
  }
};
} // end namespace internal

template<typename Derived>
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
{
  return JacobiSVD<PlainObject>(*this, computationOptions);
}



#endif // EIGEN_JACOBISVD_H