Hyperplane.h 11.5 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Hyperplane
  *
  * \brief A hyperplane
  *
  * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
  * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *             Notice that the dimension of the hyperplane is _AmbientDim-1.
  *
  * This class represents an hyperplane as the zero set of the implicit equation
  * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
  * and \f$ d \f$ is the distance (offset) to the origin.
  */
template <typename _Scalar, int _AmbientDim, int _Options>
class Hyperplane
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
  enum {
    AmbientDimAtCompileTime = _AmbientDim,
    Options = _Options
  };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef DenseIndex Index;
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
  typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
                        ? Dynamic
                        : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
  typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
  typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;

  /** Default constructor without initialization */
  inline explicit Hyperplane() {}
  
  template<int OtherOptions>
  Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
   : m_coeffs(other.coeffs())
  {}

  /** Constructs a dynamic-size hyperplane with \a _dim the dimension
    * of the ambient space */
  inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}

  /** Construct a plane from its normal \a n and a point \a e onto the plane.
    * \warning the vector normal is assumed to be normalized.
    */
  inline Hyperplane(const VectorType& n, const VectorType& e)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = -n.dot(e);
  }

  /** Constructs a plane from its normal \a n and distance to the origin \a d
    * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
    * \warning the vector normal is assumed to be normalized.
    */
  inline Hyperplane(const VectorType& n, Scalar d)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = d;
  }

  /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
    * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
  {
    Hyperplane result(p0.size());
    result.normal() = (p1 - p0).unitOrthogonal();
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
    * is required to be exactly 3.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
    Hyperplane result(p0.size());
    result.normal() = (p2 - p0).cross(p1 - p0).normalized();
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the parametrized line \a parametrized.
    * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
    * so an arbitrary choice is made.
    */
  // FIXME to be consitent with the rest this could be implemented as a static Through function ??
  explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
  {
    normal() = parametrized.direction().unitOrthogonal();
    offset() = -parametrized.origin().dot(normal());
  }

  ~Hyperplane() {}

  /** \returns the dimension in which the plane holds */
  inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }

  /** normalizes \c *this */
  void normalize(void)
  {
    m_coeffs /= normal().norm();
  }

  /** \returns the signed distance between the plane \c *this and a point \a p.
    * \sa absDistance()
    */
  inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }

  /** \returns the absolute distance between the plane \c *this and a point \a p.
    * \sa signedDistance()
    */
  inline Scalar absDistance(const VectorType& p) const { return internal::abs(signedDistance(p)); }

  /** \returns the projection of a point \a p onto the plane \c *this.
    */
  inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }

  /** \returns a constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
    * \warning the vector normal is assumed to be normalized.
    */
  inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }

  /** \returns a non-constant reference to the distance to the origin, which is also the constant part
    * of the implicit equation */
  inline Scalar& offset() { return m_coeffs(dim()); }

  /** \returns a constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a non-constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline Coefficients& coeffs() { return m_coeffs; }

  /** \returns the intersection of *this with \a other.
    *
    * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
    *
    * \note If \a other is approximately parallel to *this, this method will return any point on *this.
    */
  VectorType intersection(const Hyperplane& other)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
    Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
    // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
    // whether the two lines are approximately parallel.
    if(internal::isMuchSmallerThan(det, Scalar(1)))
    {   // special case where the two lines are approximately parallel. Pick any point on the first line.
        if(internal::abs(coeffs().coeff(1))>internal::abs(coeffs().coeff(0)))
            return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
        else
            return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
    }
    else
    {   // general case
        Scalar invdet = Scalar(1) / det;
        return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
                          invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
    }
  }

  /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
    *
    * \param mat the Dim x Dim transformation matrix
    * \param traits specifies whether the matrix \a mat represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    */
  template<typename XprType>
  inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
  {
    if (traits==Affine)
      normal() = mat.inverse().transpose() * normal();
    else if (traits==Isometry)
      normal() = mat * normal();
    else
    {
      eigen_assert("invalid traits value in Hyperplane::transform()");
    }
    return *this;
  }

  /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
    *
    * \param t the transformation of dimension Dim
    * \param traits specifies whether the transformation \a t represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    *               Other kind of transformations are not supported.
    */
  template<int TrOptions>
  inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
                                TransformTraits traits = Affine)
  {
    transform(t.linear(), traits);
    offset() -= normal().dot(t.translation());
    return *this;
  }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Hyperplane,
           Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
  {
    return typename internal::cast_return_type<Hyperplane,
                    Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType,int OtherOptions>
  inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  template<int OtherOptions>
  bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

protected:

  Coefficients m_coeffs;
};

#endif // EIGEN_HYPERPLANE_H