TriangularMatrix.h 29.9 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H

namespace internal {
  
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
  
}

/** \internal
  *
  * \class TriangularBase
  * \ingroup Core_Module
  *
  * \brief Base class for triangular part in a matrix
  */
template<typename Derived> class TriangularBase : public EigenBase<Derived>
{
  public:

    enum {
      Mode = internal::traits<Derived>::Mode,
      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
    };
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
    typedef DenseMatrixType DenseType;

    inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }

    inline Index rows() const { return derived().rows(); }
    inline Index cols() const { return derived().cols(); }
    inline Index outerStride() const { return derived().outerStride(); }
    inline Index innerStride() const { return derived().innerStride(); }

    inline Scalar coeff(Index row, Index col) const  { return derived().coeff(row,col); }
    inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }

    /** \see MatrixBase::copyCoeff(row,col)
      */
    template<typename Other>
    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
    {
      derived().coeffRef(row, col) = other.coeff(row, col);
    }

    inline Scalar operator()(Index row, Index col) const
    {
      check_coordinates(row, col);
      return coeff(row,col);
    }
    inline Scalar& operator()(Index row, Index col)
    {
      check_coordinates(row, col);
      return coeffRef(row,col);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
    inline Derived& derived() { return *static_cast<Derived*>(this); }
    #endif // not EIGEN_PARSED_BY_DOXYGEN

    template<typename DenseDerived>
    void evalTo(MatrixBase<DenseDerived> &other) const;
    template<typename DenseDerived>
    void evalToLazy(MatrixBase<DenseDerived> &other) const;

    DenseMatrixType toDenseMatrix() const
    {
      DenseMatrixType res(rows(), cols());
      evalToLazy(res);
      return res;
    }

  protected:

    void check_coordinates(Index row, Index col) const
    {
      EIGEN_ONLY_USED_FOR_DEBUG(row);
      EIGEN_ONLY_USED_FOR_DEBUG(col);
      eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
      const int mode = int(Mode) & ~SelfAdjoint;
      eigen_assert((mode==Upper && col>=row)
                || (mode==Lower && col<=row)
                || ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
                || ((mode==StrictlyLower || mode==UnitLower) && col<row));
    }

    #ifdef EIGEN_INTERNAL_DEBUGGING
    void check_coordinates_internal(Index row, Index col) const
    {
      check_coordinates(row, col);
    }
    #else
    void check_coordinates_internal(Index , Index ) const {}
    #endif

};

/** \class TriangularView
  * \ingroup Core_Module
  *
  * \brief Base class for triangular part in a matrix
  *
  * \param MatrixType the type of the object in which we are taking the triangular part
  * \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
  *             #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
  *             This is in fact a bit field; it must have either #Upper or #Lower, 
  *             and additionnaly it may have #UnitDiag or #ZeroDiag or neither.
  *
  * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
  * matrices one should speak of "trapezoid" parts. This class is the return type
  * of MatrixBase::triangularView() and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::triangularView()
  */
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
{
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
  typedef MatrixType ExpressionType;
  typedef typename MatrixType::PlainObject DenseMatrixType;
  enum {
    Mode = _Mode,
    Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
    CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
  };
};
}

template<int Mode, bool LhsIsTriangular,
         typename Lhs, bool LhsIsVector,
         typename Rhs, bool RhsIsVector>
struct TriangularProduct;

template<typename _MatrixType, unsigned int _Mode> class TriangularView
  : public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
  public:

    typedef TriangularBase<TriangularView> Base;
    typedef typename internal::traits<TriangularView>::Scalar Scalar;

    typedef _MatrixType MatrixType;
    typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
    typedef DenseMatrixType PlainObject;

  protected:
    typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;

    typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
    
  public:
    using Base::evalToLazy;
  

    typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
    typedef typename internal::traits<TriangularView>::Index Index;

    enum {
      Mode = _Mode,
      TransposeMode = (Mode & Upper ? Lower : 0)
                    | (Mode & Lower ? Upper : 0)
                    | (Mode & (UnitDiag))
                    | (Mode & (ZeroDiag))
    };

    inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
    {}

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    inline Index outerStride() const { return m_matrix.outerStride(); }
    inline Index innerStride() const { return m_matrix.innerStride(); }

    /** \sa MatrixBase::operator+=() */
    template<typename Other> TriangularView&  operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
    /** \sa MatrixBase::operator-=() */
    template<typename Other> TriangularView&  operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
    /** \sa MatrixBase::operator*=() */
    TriangularView&  operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
    /** \sa MatrixBase::operator/=() */
    TriangularView&  operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }

    /** \sa MatrixBase::fill() */
    void fill(const Scalar& value) { setConstant(value); }
    /** \sa MatrixBase::setConstant() */
    TriangularView& setConstant(const Scalar& value)
    { return *this = MatrixType::Constant(rows(), cols(), value); }
    /** \sa MatrixBase::setZero() */
    TriangularView& setZero() { return setConstant(Scalar(0)); }
    /** \sa MatrixBase::setOnes() */
    TriangularView& setOnes() { return setConstant(Scalar(1)); }

    /** \sa MatrixBase::coeff()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar coeff(Index row, Index col) const
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.coeff(row, col);
    }

    /** \sa MatrixBase::coeffRef()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.const_cast_derived().coeffRef(row, col);
    }

    const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
    MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }

    /** Assigns a triangular matrix to a triangular part of a dense matrix */
    template<typename OtherDerived>
    TriangularView& operator=(const TriangularBase<OtherDerived>& other);

    template<typename OtherDerived>
    TriangularView& operator=(const MatrixBase<OtherDerived>& other);

    TriangularView& operator=(const TriangularView& other)
    { return *this = other.nestedExpression(); }

    template<typename OtherDerived>
    void lazyAssign(const TriangularBase<OtherDerived>& other);

    template<typename OtherDerived>
    void lazyAssign(const MatrixBase<OtherDerived>& other);

    /** \sa MatrixBase::conjugate() */
    inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
    { return m_matrix.conjugate(); }
    /** \sa MatrixBase::conjugate() const */
    inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
    { return m_matrix.conjugate(); }

    /** \sa MatrixBase::adjoint() */
    inline TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint()
    { return m_matrix.adjoint(); }
    /** \sa MatrixBase::adjoint() const */
    inline const TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
    { return m_matrix.adjoint(); }

    /** \sa MatrixBase::transpose() */
    inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
    {
      EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
      return m_matrix.const_cast_derived().transpose();
    }
    /** \sa MatrixBase::transpose() const */
    inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
    { return m_matrix.transpose(); }

    /** Efficient triangular matrix times vector/matrix product */
    template<typename OtherDerived>
    TriangularProduct<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
    operator*(const MatrixBase<OtherDerived>& rhs) const
    {
      return TriangularProduct
              <Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
              (m_matrix, rhs.derived());
    }

    /** Efficient vector/matrix times triangular matrix product */
    template<typename OtherDerived> friend
    TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
    operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
    {
      return TriangularProduct
              <Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
              (lhs.derived(),rhs.m_matrix);
    }

    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived>
    struct eigen2_product_return_type
    {
      typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
      typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
      typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
      typedef typename ProdRetType::PlainObject type;
    };
    template<typename OtherDerived>
    const typename eigen2_product_return_type<OtherDerived>::type
    operator*(const EigenBase<OtherDerived>& rhs) const
    {
      typename OtherDerived::PlainObject::DenseType rhsPlainObject;
      rhs.evalTo(rhsPlainObject);
      return this->toDenseMatrix() * rhsPlainObject;
    }
    template<typename OtherMatrixType>
    bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
    {
      return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
    }
    template<typename OtherDerived>
    bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
    {
      return this->toDenseMatrix().isApprox(other, precision);
    }
    #endif // EIGEN2_SUPPORT

    template<int Side, typename Other>
    inline const internal::triangular_solve_retval<Side,TriangularView, Other>
    solve(const MatrixBase<Other>& other) const;

    template<int Side, typename OtherDerived>
    void solveInPlace(const MatrixBase<OtherDerived>& other) const;

    template<typename Other>
    inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other> 
    solve(const MatrixBase<Other>& other) const
    { return solve<OnTheLeft>(other); }

    template<typename OtherDerived>
    void solveInPlace(const MatrixBase<OtherDerived>& other) const
    { return solveInPlace<OnTheLeft>(other); }

    const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
    {
      EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }
    SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
    {
      EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }

    template<typename OtherDerived>
    void swap(TriangularBase<OtherDerived> const & other)
    {
      TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
    }

    template<typename OtherDerived>
    void swap(MatrixBase<OtherDerived> const & other)
    {
      TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
    }

    Scalar determinant() const
    {
      if (Mode & UnitDiag)
        return 1;
      else if (Mode & ZeroDiag)
        return 0;
      else
        return m_matrix.diagonal().prod();
    }
    
    // TODO simplify the following:
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      setZero();
      return assignProduct(other,1);
    }
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      return assignProduct(other,1);
    }
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      return assignProduct(other,-1);
    }
    
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
    {
      setZero();
      return assignProduct(other,other.alpha());
    }
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
    {
      return assignProduct(other,other.alpha());
    }
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
    {
      return assignProduct(other,-other.alpha());
    }
    
  protected:
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);

    const MatrixTypeNested m_matrix;
};

/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/

namespace internal {

template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector
{
  enum {
    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
  };
  
  typedef typename Derived1::Scalar Scalar;

  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);

    eigen_assert( Mode == Upper || Mode == Lower
            || Mode == StrictlyUpper || Mode == StrictlyLower
            || Mode == UnitUpper || Mode == UnitLower);
    if((Mode == Upper && row <= col)
    || (Mode == Lower && row >= col)
    || (Mode == StrictlyUpper && row < col)
    || (Mode == StrictlyLower && row > col)
    || (Mode == UnitUpper && row < col)
    || (Mode == UnitLower && row > col))
      dst.copyCoeff(row, col, src);
    else if(ClearOpposite)
    {
      if (Mode&UnitDiag && row==col)
        dst.coeffRef(row, col) = Scalar(1);
      else
        dst.coeffRef(row, col) = Scalar(0);
    }
  }
};

// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
{
  inline static void run(Derived1 &, const Derived2 &) {}
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  typedef typename Derived1::Scalar Scalar;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = std::min(j, dst.rows()-1);
      for(Index i = 0; i <= maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
        for(Index i = maxi+1; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = Scalar(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      for(Index i = j; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      Index maxi = std::min(j, dst.rows());
      if (ClearOpposite)
        for(Index i = 0; i < maxi; ++i)
          dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = std::min(j, dst.rows());
      for(Index i = 0; i < maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
        for(Index i = maxi; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = 0;
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      for(Index i = j+1; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      Index maxi = std::min(j, dst.rows()-1);
      if (ClearOpposite)
        for(Index i = 0; i <= maxi; ++i)
          dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = std::min(j, dst.rows());
      for(Index i = 0; i < maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
      {
        for(Index i = maxi+1; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = 0;
      }
    }
    dst.diagonal().setOnes();
  }
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = std::min(j, dst.rows());
      for(Index i = maxi+1; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
      {
        for(Index i = 0; i < maxi; ++i)
          dst.coeffRef(i, j) = 0;
      }
    }
    dst.diagonal().setOnes();
  }
};

} // end namespace internal

// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
{
  if(OtherDerived::Flags & EvalBeforeAssigningBit)
  {
    typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
    other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
    lazyAssign(other_evaluated);
  }
  else
    lazyAssign(other.derived());
  return *this;
}

// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
  enum {
    unroll = MatrixType::SizeAtCompileTime != Dynamic
          && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
          && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
  };
  eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());

  internal::triangular_assignment_selector
    <MatrixType, OtherDerived, int(Mode),
    unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
    false // do not change the opposite triangular part
    >::run(m_matrix.const_cast_derived(), other.derived());
}



template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
{
  eigen_assert(Mode == int(OtherDerived::Mode));
  if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
  {
    typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
    other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
    lazyAssign(other_evaluated);
  }
  else
    lazyAssign(other.derived().nestedExpression());
  return *this;
}

template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
  enum {
    unroll = MatrixType::SizeAtCompileTime != Dynamic
                   && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
                   && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
                        <= EIGEN_UNROLLING_LIMIT
  };
  eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());

  internal::triangular_assignment_selector
    <MatrixType, OtherDerived, int(Mode),
    unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
    false // preserve the opposite triangular part
    >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
}

/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
  if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit)
  {
    typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols());
    evalToLazy(other_evaluated);
    other.derived().swap(other_evaluated);
  }
  else
    evalToLazy(other.derived());
}

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
  enum {
    unroll = DenseDerived::SizeAtCompileTime != Dynamic
                   && internal::traits<Derived>::CoeffReadCost != Dynamic
                   && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
                        <= EIGEN_UNROLLING_LIMIT
  };
  other.derived().resize(this->rows(), this->cols());

  internal::triangular_assignment_selector
    <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
    unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
    true // clear the opposite triangular part
    >::run(other.derived(), derived().nestedExpression());
}

/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/

/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/

#ifdef EIGEN2_SUPPORT

// implementation of part<>(), including the SelfAdjoint case.

namespace internal {
template<typename MatrixType, unsigned int Mode>
struct eigen2_part_return_type
{
  typedef TriangularView<MatrixType, Mode> type;
};

template<typename MatrixType>
struct eigen2_part_return_type<MatrixType, SelfAdjoint>
{
  typedef SelfAdjointView<MatrixType, Upper> type;
};
}

/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
{
  return derived();
}

/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
{
  return derived();
}
#endif

/**
  * \returns an expression of a triangular view extracted from the current matrix
  *
  * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
  * \c #Lower, \c #StrictlyLower, \c #UnitLower.
  *
  * Example: \include MatrixBase_extract.cpp
  * Output: \verbinclude MatrixBase_extract.out
  *
  * \sa class TriangularView
  */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
  return derived();
}

/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
  return derived();
}

/** \returns true if *this is approximately equal to an upper triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isLowerTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
{
  RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
  {
    Index maxi = std::min(j, rows()-1);
    for(Index i = 0; i <= maxi; ++i)
    {
      RealScalar absValue = internal::abs(coeff(i,j));
      if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
    }
  }
  RealScalar threshold = maxAbsOnUpperPart * prec;
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j+1; i < rows(); ++i)
      if(internal::abs(coeff(i, j)) > threshold) return false;
  return true;
}

/** \returns true if *this is approximately equal to a lower triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isUpperTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
{
  RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j; i < rows(); ++i)
    {
      RealScalar absValue = internal::abs(coeff(i,j));
      if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
    }
  RealScalar threshold = maxAbsOnLowerPart * prec;
  for(Index j = 1; j < cols(); ++j)
  {
    Index maxi = std::min(j, rows()-1);
    for(Index i = 0; i < maxi; ++i)
      if(internal::abs(coeff(i, j)) > threshold) return false;
  }
  return true;
}

#endif // EIGEN_TRIANGULARMATRIX_H