SolveTriangular.h 10.3 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SOLVETRIANGULAR_H
#define EIGEN_SOLVETRIANGULAR_H

namespace internal {

// Forward declarations:
// The following two routines are implemented in the products/TriangularSolver*.h files
template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
struct triangular_solve_vector;

template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherStorageOrder>
struct triangular_solve_matrix;

// small helper struct extracting some traits on the underlying solver operation
template<typename Lhs, typename Rhs, int Side>
class trsolve_traits
{
  private:
    enum {
      RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1
    };
  public:
    enum {
      Unrolling   = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8)
                  ? CompleteUnrolling : NoUnrolling,
      RhsVectors  = RhsIsVectorAtCompileTime ? 1 : Dynamic
    };
};

template<typename Lhs, typename Rhs,
  int Side, // can be OnTheLeft/OnTheRight
  int Mode, // can be Upper/Lower | UnitDiag
  int Unrolling = trsolve_traits<Lhs,Rhs,Side>::Unrolling,
  int RhsVectors = trsolve_traits<Lhs,Rhs,Side>::RhsVectors
  >
struct triangular_solver_selector;

template<typename Lhs, typename Rhs, int Side, int Mode>
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,1>
{
  typedef typename Lhs::Scalar LhsScalar;
  typedef typename Rhs::Scalar RhsScalar;
  typedef blas_traits<Lhs> LhsProductTraits;
  typedef typename LhsProductTraits::ExtractType ActualLhsType;
  typedef Map<Matrix<RhsScalar,Dynamic,1>, Aligned> MappedRhs;
  static void run(const Lhs& lhs, Rhs& rhs)
  {
    ActualLhsType actualLhs = LhsProductTraits::extract(lhs);

    // FIXME find a way to allow an inner stride if packet_traits<Scalar>::size==1

    bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1;

    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(),
                                                  (useRhsDirectly ? rhs.data() : 0));
                                                  
    if(!useRhsDirectly)
      MappedRhs(actualRhs,rhs.size()) = rhs;

    triangular_solve_vector<LhsScalar, RhsScalar, typename Lhs::Index, Side, Mode, LhsProductTraits::NeedToConjugate,
                            (int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor>
      ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs);

    if(!useRhsDirectly)
      rhs = MappedRhs(actualRhs, rhs.size());
  }
};

// the rhs is a matrix
template<typename Lhs, typename Rhs, int Side, int Mode>
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
{
  typedef typename Rhs::Scalar Scalar;
  typedef typename Rhs::Index Index;
  typedef blas_traits<Lhs> LhsProductTraits;
  typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType;
  static void run(const Lhs& lhs, Rhs& rhs)
  {
    const ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
    triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
                               (Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>
      ::run(lhs.rows(), Side==OnTheLeft? rhs.cols() : rhs.rows(), &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride());
  }
};

/***************************************************************************
* meta-unrolling implementation
***************************************************************************/

template<typename Lhs, typename Rhs, int Mode, int Index, int Size,
         bool Stop = Index==Size>
struct triangular_solver_unroller;

template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
  enum {
    IsLower = ((Mode&Lower)==Lower),
    I = IsLower ? Index : Size - Index - 1,
    S = IsLower ? 0     : I+1
  };
  static void run(const Lhs& lhs, Rhs& rhs)
  {
    if (Index>0)
      rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
                         .cwiseProduct(rhs.template segment<Index>(S)).sum();

    if(!(Mode & UnitDiag))
      rhs.coeffRef(I) /= lhs.coeff(I,I);

    triangular_solver_unroller<Lhs,Rhs,Mode,Index+1,Size>::run(lhs,rhs);
  }
};

template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,true> {
  static void run(const Lhs&, Rhs&) {}
};

template<typename Lhs, typename Rhs, int Mode>
struct triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,1> {
  static void run(const Lhs& lhs, Rhs& rhs)
  { triangular_solver_unroller<Lhs,Rhs,Mode,0,Rhs::SizeAtCompileTime>::run(lhs,rhs); }
};

template<typename Lhs, typename Rhs, int Mode>
struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
  static void run(const Lhs& lhs, Rhs& rhs)
  {
    Transpose<const Lhs> trLhs(lhs);
    Transpose<Rhs> trRhs(rhs);
    
    triangular_solver_unroller<Transpose<const Lhs>,Transpose<Rhs>,
                              ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
                              0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs);
  }
};

} // end namespace internal

/***************************************************************************
* TriangularView methods
***************************************************************************/

/** "in-place" version of TriangularView::solve() where the result is written in \a other
  *
  * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
  * This function will const_cast it, so constness isn't honored here.
  *
  * See TriangularView:solve() for the details.
  */
template<typename MatrixType, unsigned int Mode>
template<int Side, typename OtherDerived>
void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
  OtherDerived& other = _other.const_cast_derived();
  eigen_assert(cols() == rows());
  eigen_assert( (Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols()) );
  eigen_assert(!(Mode & ZeroDiag));
  eigen_assert(Mode & (Upper|Lower));

  enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit  && OtherDerived::IsVectorAtCompileTime };
  typedef typename internal::conditional<copy,
    typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
  OtherCopy otherCopy(other);

  internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
    Side, Mode>::run(nestedExpression(), otherCopy);

  if (copy)
    other = otherCopy;
}

/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
  *
  * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
  * \a Side==OnTheLeft (the default), or the right-inverse-multiply  \a other * inverse(\c *this) if
  * \a Side==OnTheRight.
  *
  * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
  * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
  * is an upper (resp. lower) triangular matrix.
  *
  * Example: \include MatrixBase_marked.cpp
  * Output: \verbinclude MatrixBase_marked.out
  *
  * This function returns an expression of the inverse-multiply and can works in-place if it is assigned
  * to the same matrix or vector \a other.
  *
  * For users coming from BLAS, this function (and more specifically solveInPlace()) offer
  * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
  *
  * \sa TriangularView::solveInPlace()
  */
template<typename Derived, unsigned int Mode>
template<int Side, typename Other>
const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
{
  return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
}

namespace internal {


template<int Side, typename TriangularType, typename Rhs>
struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
{
  typedef typename internal::plain_matrix_type_column_major<Rhs>::type ReturnType;
};

template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
 : public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
{
  typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
  typedef ReturnByValue<triangular_solve_retval> Base;
  typedef typename Base::Index Index;

  triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
    : m_triangularMatrix(tri), m_rhs(rhs)
  {}

  inline Index rows() const { return m_rhs.rows(); }
  inline Index cols() const { return m_rhs.cols(); }

  template<typename Dest> inline void evalTo(Dest& dst) const
  {
    if(!(is_same<RhsNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_rhs)))
      dst = m_rhs;
    m_triangularMatrix.template solveInPlace<Side>(dst);
  }

  protected:
    const TriangularType& m_triangularMatrix;
    const typename Rhs::Nested m_rhs;
};

} // namespace internal

#endif // EIGEN_SOLVETRIANGULAR_H