BDCSVD.h 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
// 
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
// research report written by Ming Gu and Stanley C.Eisenstat
// The code variable names correspond to the names they used in their 
// report
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H
// #define EIGEN_BDCSVD_DEBUG_VERBOSE
// #define EIGEN_BDCSVD_SANITY_CHECKS

namespace Eigen {

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]");
#endif
  
template<typename _MatrixType> class BDCSVD;

namespace internal {

template<typename _MatrixType> 
struct traits<BDCSVD<_MatrixType> >
{
  typedef _MatrixType MatrixType;
};  

} // end namespace internal
  
  
/** \ingroup SVD_Module
 *
 *
 * \class BDCSVD
 *
 * \brief class Bidiagonal Divide and Conquer SVD
 *
 * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
 *
 * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
 * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
 * You can control the switching size with the setSwitchSize() method, default is 16.
 * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
 * recommended and can several order of magnitude faster.
 *
 * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
 * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
 * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
 * significantly degrade the accuracy.
 *
 * \sa class JacobiSVD
 */
template<typename _MatrixType> 
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
{
  typedef SVDBase<BDCSVD> Base;
    
public:
  using Base::rows;
  using Base::cols;
  using Base::computeU;
  using Base::computeV;
  
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  typedef typename NumTraits<RealScalar>::Literal Literal;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime, 
    ColsAtCompileTime = MatrixType::ColsAtCompileTime, 
    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), 
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 
    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), 
    MatrixOptions = MatrixType::Options
  };

  typedef typename Base::MatrixUType MatrixUType;
  typedef typename Base::MatrixVType MatrixVType;
  typedef typename Base::SingularValuesType SingularValuesType;
  
  typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
  typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
  typedef Matrix<RealScalar, Dynamic, 1> VectorType;
  typedef Array<RealScalar, Dynamic, 1> ArrayXr;
  typedef Array<Index,1,Dynamic> ArrayXi;
  typedef Ref<ArrayXr> ArrayRef;
  typedef Ref<ArrayXi> IndicesRef;

  /** \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via BDCSVD::compute(const MatrixType&).
   */
  BDCSVD() : m_algoswap(16), m_numIters(0)
  {}


  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem size.
   * \sa BDCSVD()
   */
  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
    : m_algoswap(16), m_numIters(0)
  {
    allocate(rows, cols, computationOptions);
  }

  /** \brief Constructor performing the decomposition of given matrix.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
    : m_algoswap(16), m_numIters(0)
  {
    compute(matrix, computationOptions);
  }

  ~BDCSVD() 
  {
  }
  
  /** \brief Method performing the decomposition of given matrix using custom options.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);

  /** \brief Method performing the decomposition of given matrix using current options.
   *
   * \param matrix the matrix to decompose
   *
   * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
   */
  BDCSVD& compute(const MatrixType& matrix)
  {
    return compute(matrix, this->m_computationOptions);
  }

  void setSwitchSize(int s) 
  {
    eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
    m_algoswap = s;
  }
 
private:
  void allocate(Index rows, Index cols, unsigned int computationOptions);
  void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
  void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
  void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
  void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
  void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
  void deflation43(Index firstCol, Index shift, Index i, Index size);
  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
  template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
  void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
  void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
  static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);

protected:
  MatrixXr m_naiveU, m_naiveV;
  MatrixXr m_computed;
  Index m_nRec;
  ArrayXr m_workspace;
  ArrayXi m_workspaceI;
  int m_algoswap;
  bool m_isTranspose, m_compU, m_compV;
  
  using Base::m_singularValues;
  using Base::m_diagSize;
  using Base::m_computeFullU;
  using Base::m_computeFullV;
  using Base::m_computeThinU;
  using Base::m_computeThinV;
  using Base::m_matrixU;
  using Base::m_matrixV;
  using Base::m_isInitialized;
  using Base::m_nonzeroSingularValues;

public:  
  int m_numIters;
}; //end class BDCSVD


// Method to allocate and initialize matrix and attributes
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  m_isTranspose = (cols > rows);

  if (Base::allocate(rows, cols, computationOptions))
    return;
  
  m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
  m_compU = computeV();
  m_compV = computeU();
  if (m_isTranspose)
    std::swap(m_compU, m_compV);
  
  if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
  else         m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
  
  if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
  
  m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
  m_workspaceI.resize(3*m_diagSize);
}// end allocate

template<typename MatrixType>
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) 
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "\n\n\n======================================================================================================================\n\n\n";
#endif
  allocate(matrix.rows(), matrix.cols(), computationOptions);
  using std::abs;

  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  
  //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
  if(matrix.cols() < m_algoswap)
  {
    // FIXME this line involves temporaries
    JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
    if(computeU()) m_matrixU = jsvd.matrixU();
    if(computeV()) m_matrixV = jsvd.matrixV();
    m_singularValues = jsvd.singularValues();
    m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
    m_isInitialized = true;
    return *this;
  }
  
  //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
  RealScalar scale = matrix.cwiseAbs().maxCoeff();
  if(scale==Literal(0)) scale = Literal(1);
  MatrixX copy;
  if (m_isTranspose) copy = matrix.adjoint()/scale;
  else               copy = matrix/scale;
  
  //**** step 1 - Bidiagonalization
  // FIXME this line involves temporaries
  internal::UpperBidiagonalization<MatrixX> bid(copy);

  //**** step 2 - Divide & Conquer
  m_naiveU.setZero();
  m_naiveV.setZero();
  // FIXME this line involves a temporary matrix
  m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
  m_computed.template bottomRows<1>().setZero();
  divide(0, m_diagSize - 1, 0, 0, 0);

  //**** step 3 - Copy singular values and vectors
  for (int i=0; i<m_diagSize; i++)
  {
    RealScalar a = abs(m_computed.coeff(i, i));
    m_singularValues.coeffRef(i) = a * scale;
    if (a<considerZero)
    {
      m_nonzeroSingularValues = i;
      m_singularValues.tail(m_diagSize - i - 1).setZero();
      break;
    }
    else if (i == m_diagSize - 1)
    {
      m_nonzeroSingularValues = i + 1;
      break;
    }
  }

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
//   std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
//   std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
#endif
  if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
  else              copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);

  m_isInitialized = true;
  return *this;
}// end compute


template<typename MatrixType>
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
{
  // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
  if (computeU())
  {
    Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
    m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
    m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
  }
  if (computeV())
  {
    Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
    m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
    m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
  }
}

/** \internal
  * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
  *  A = [A1]
  *      [A2]
  * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
  * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
  * enough.
  */
template<typename MatrixType>
void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
{
  Index n = A.rows();
  if(n>100)
  {
    // If the matrices are large enough, let's exploit the sparse structure of A by
    // splitting it in half (wrt n1), and packing the non-zero columns.
    Index n2 = n - n1;
    Map<MatrixXr> A1(m_workspace.data()      , n1, n);
    Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
    Map<MatrixXr> B1(m_workspace.data()+  n*n, n,  n);
    Map<MatrixXr> B2(m_workspace.data()+2*n*n, n,  n);
    Index k1=0, k2=0;
    for(Index j=0; j<n; ++j)
    {
      if( (A.col(j).head(n1).array()!=Literal(0)).any() )
      {
        A1.col(k1) = A.col(j).head(n1);
        B1.row(k1) = B.row(j);
        ++k1;
      }
      if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
      {
        A2.col(k2) = A.col(j).tail(n2);
        B2.row(k2) = B.row(j);
        ++k2;
      }
    }
  
    A.topRows(n1).noalias()    = A1.leftCols(k1) * B1.topRows(k1);
    A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
  }
  else
  {
    Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
    tmp.noalias() = A*B;
    A = tmp;
  }
}

// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the 
// place of the submatrix we are currently working on.

//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; 
// lastCol + 1 - firstCol is the size of the submatrix.
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
//@param firstRowW : Same as firstRowW with the column.
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix 
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
{
  // requires rows = cols + 1;
  using std::pow;
  using std::sqrt;
  using std::abs;
  const Index n = lastCol - firstCol + 1;
  const Index k = n/2;
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  RealScalar alphaK;
  RealScalar betaK; 
  RealScalar r0; 
  RealScalar lambda, phi, c0, s0;
  VectorType l, f;
  // We use the other algorithm which is more efficient for small 
  // matrices.
  if (n < m_algoswap)
  {
    // FIXME this line involves temporaries
    JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
    if (m_compU)
      m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
    else 
    {
      m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
      m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
    }
    if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
    m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
    m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
    return;
  }
  // We use the divide and conquer algorithm
  alphaK =  m_computed(firstCol + k, firstCol + k);
  betaK = m_computed(firstCol + k + 1, firstCol + k);
  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the 
  // right submatrix before the left one. 
  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);

  if (m_compU)
  {
    lambda = m_naiveU(firstCol + k, firstCol + k);
    phi = m_naiveU(firstCol + k + 1, lastCol + 1);
  } 
  else 
  {
    lambda = m_naiveU(1, firstCol + k);
    phi = m_naiveU(0, lastCol + 1);
  }
  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
  if (m_compU)
  {
    l = m_naiveU.row(firstCol + k).segment(firstCol, k);
    f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
  } 
  else 
  {
    l = m_naiveU.row(1).segment(firstCol, k);
    f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
  }
  if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
  if (r0<considerZero)
  {
    c0 = Literal(1);
    s0 = Literal(0);
  }
  else
  {
    c0 = alphaK * lambda / r0;
    s0 = betaK * phi / r0;
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  if (m_compU)
  {
    MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));     
    // we shiftW Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
      m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
    // we shift q1 at the left with a factor c0
    m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
    // last column = q1 * - s0
    m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; 
    // q2 *= c0
    m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
  } 
  else 
  {
    RealScalar q1 = m_naiveU(0, firstCol + k);
    // we shift Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
      m_naiveU(0, i + 1) = m_naiveU(0, i);
    // we shift q1 at the left with a factor c0
    m_naiveU(0, firstCol) = (q1 * c0);
    // last column = q1 * - s0
    m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; 
    // q2 *= c0
    m_naiveU(1, lastCol + 1) *= c0;
    m_naiveU.row(1).segment(firstCol + 1, k).setZero();
    m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  m_computed(firstCol + shift, firstCol + shift) = r0;
  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
#endif
  // Second part: try to deflate singular values in combined matrix
  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
  std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
  std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
  std::cout << "err:      " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
  static int count = 0;
  std::cout << "# " << ++count << "\n\n";
  assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
//   assert(count<681);
//   assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
#endif
  
  // Third part: compute SVD of combined matrix
  MatrixXr UofSVD, VofSVD;
  VectorType singVals;
  computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(UofSVD.allFinite());
  assert(VofSVD.allFinite());
#endif
  
  if (m_compU)
    structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
  else
  {
    Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
    tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
    m_naiveU.middleCols(firstCol, n + 1) = tmp;
  }
  
  if (m_compV)  structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
  m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
}// end divide

// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
//
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
// handling of round-off errors, be consistent in ordering
// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
template <typename MatrixType>
void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
{
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  using std::abs;
  ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
  m_workspace.head(n) =  m_computed.block(firstCol, firstCol, n, n).diagonal();
  ArrayRef diag = m_workspace.head(n);
  diag(0) = Literal(0);

  // Allocate space for singular values and vectors
  singVals.resize(n);
  U.resize(n+1, n+1);
  if (m_compV) V.resize(n, n);

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  if (col0.hasNaN() || diag.hasNaN())
    std::cout << "\n\nHAS NAN\n\n";
#endif
  
  // Many singular values might have been deflated, the zero ones have been moved to the end,
  // but others are interleaved and we must ignore them at this stage.
  // To this end, let's compute a permutation skipping them:
  Index actual_n = n;
  while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
  Index m = 0; // size of the deflated problem
  for(Index k=0;k<actual_n;++k)
    if(abs(col0(k))>considerZero)
      m_workspaceI(m++) = k;
  Map<ArrayXi> perm(m_workspaceI.data(),m);
  
  Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
  Map<ArrayXr> mus(m_workspace.data()+2*n, n);
  Map<ArrayXr> zhat(m_workspace.data()+3*n, n);

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "computeSVDofM using:\n";
  std::cout << "  z: " << col0.transpose() << "\n";
  std::cout << "  d: " << diag.transpose() << "\n";
#endif
  
  // Compute singVals, shifts, and mus
  computeSingVals(col0, diag, perm, singVals, shifts, mus);
  
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "  j:        " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
  std::cout << "  sing-val: " << singVals.transpose() << "\n";
  std::cout << "  mu:       " << mus.transpose() << "\n";
  std::cout << "  shift:    " << shifts.transpose() << "\n";
  
  {
    Index actual_n = n;
    while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
    std::cout << "\n\n    mus:    " << mus.head(actual_n).transpose() << "\n\n";
    std::cout << "    check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
    std::cout << "    check2 (>0)      : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
    std::cout << "    check3 (>0)      : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
    std::cout << "    check4 (>0)      : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
  }
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(singVals.allFinite());
  assert(mus.allFinite());
  assert(shifts.allFinite());
#endif
  
  // Compute zhat
  perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "  zhat: " << zhat.transpose() << "\n";
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(zhat.allFinite());
#endif
  
  computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
  
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
  std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(U.allFinite());
  assert(V.allFinite());
  assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
  assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  // Because of deflation, the singular values might not be completely sorted.
  // Fortunately, reordering them is a O(n) problem
  for(Index i=0; i<actual_n-1; ++i)
  {
    if(singVals(i)>singVals(i+1))
    {
      using std::swap;
      swap(singVals(i),singVals(i+1));
      U.col(i).swap(U.col(i+1));
      if(m_compV) V.col(i).swap(V.col(i+1));
    }
  }
  
  // Reverse order so that singular values in increased order
  // Because of deflation, the zeros singular-values are already at the end
  singVals.head(actual_n).reverseInPlace();
  U.leftCols(actual_n).rowwise().reverseInPlace();
  if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
  
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
  std::cout << "  * j:        " << jsvd.singularValues().transpose() << "\n\n";
  std::cout << "  * sing-val: " << singVals.transpose() << "\n";
//   std::cout << "  * err:      " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
#endif
}

template <typename MatrixType>
typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
{
  Index m = perm.size();
  RealScalar res = Literal(1);
  for(Index i=0; i<m; ++i)
  {
    Index j = perm(i);
    // The following expression could be rewritten to involve only a single division,
    // but this would make the expression more sensitive to overflow.
    res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
  }
  return res;

}

template <typename MatrixType>
void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
                                         VectorType& singVals, ArrayRef shifts, ArrayRef mus)
{
  using std::abs;
  using std::swap;
  using std::sqrt;

  Index n = col0.size();
  Index actual_n = n;
  // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
  // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
  while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;

  for (Index k = 0; k < n; ++k)
  {
    if (col0(k) == Literal(0) || actual_n==1)
    {
      // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
      // if actual_n==1, then the deflated problem is already diagonalized
      singVals(k) = k==0 ? col0(0) : diag(k);
      mus(k) = Literal(0);
      shifts(k) = k==0 ? col0(0) : diag(k);
      continue;
    } 

    // otherwise, use secular equation to find singular value
    RealScalar left = diag(k);
    RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
    if(k==actual_n-1)
      right = (diag(actual_n-1) + col0.matrix().norm());
    else
    {
      // Skip deflated singular values,
      // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
      // This should be equivalent to using perm[]
      Index l = k+1;
      while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
      right = diag(l);
    }

    // first decide whether it's closer to the left end or the right end
    RealScalar mid = left + (right-left) / Literal(2);
    RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    std::cout << right-left << "\n";
    std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right)   << "\n";
    std::cout << "     = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
#endif
    RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
    
    // measure everything relative to shift
    Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
    diagShifted = diag - shift;
    
    // initial guess
    RealScalar muPrev, muCur;
    if (shift == left)
    {
      muPrev = (right - left) * RealScalar(0.1);
      if (k == actual_n-1) muCur = right - left;
      else                 muCur = (right - left) * RealScalar(0.5);
    }
    else
    {
      muPrev = -(right - left) * RealScalar(0.1);
      muCur = -(right - left) * RealScalar(0.5);
    }

    RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
    RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
    if (abs(fPrev) < abs(fCur))
    {
      swap(fPrev, fCur);
      swap(muPrev, muCur);
    }

    // rational interpolation: fit a function of the form a / mu + b through the two previous
    // iterates and use its zero to compute the next iterate
    bool useBisection = fPrev*fCur>Literal(0);
    while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
    {
      ++m_numIters;

      // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
      RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
      RealScalar b = fCur - a / muCur;
      // And find mu such that f(mu)==0:
      RealScalar muZero = -a/b;
      RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
      
      muPrev = muCur;
      fPrev = fCur;
      muCur = muZero;
      fCur = fZero;
      
      
      if (shift == left  && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
      if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
      if (abs(fCur)>abs(fPrev)) useBisection = true;
    }

    // fall back on bisection method if rational interpolation did not work
    if (useBisection)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
#endif
      RealScalar leftShifted, rightShifted;
      if (shift == left)
      {
        // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
        // the factor 2 is to be more conservative
        leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );

        // check that we did it right:
        eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
        // I don't understand why the case k==0 would be special there:
        // if (k == 0) rightShifted = right - left; else
        rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
      }
      else
      {
        leftShifted = -(right - left) * RealScalar(0.51);
        if(k+1<n)
          rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
        else
          rightShifted = -(std::numeric_limits<RealScalar>::min)();
      }
      
      RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);

#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
      RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
#endif

#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      if(!(fLeft * fRight<0))
      {
        std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose()  << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
        std::cout << k << " : " <<  fLeft << " * " << fRight << " == " << fLeft * fRight << "  ;  " << left << " - " << right << " -> " <<  leftShifted << " " << rightShifted << "   shift=" << shift << "\n";
      }
#endif
      eigen_internal_assert(fLeft * fRight < Literal(0));
      
      while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
      {
        RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
        fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
        if (fLeft * fMid < Literal(0))
        {
          rightShifted = midShifted;
        }
        else
        {
          leftShifted = midShifted;
          fLeft = fMid;
        }
      }

      muCur = (leftShifted + rightShifted) / Literal(2);
    }
      
    singVals[k] = shift + muCur;
    shifts[k] = shift;
    mus[k] = muCur;

    // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
    // (deflation is supposed to avoid this from happening)
    // - this does no seem to be necessary anymore -
//     if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
//     if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
  }
}


// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
template <typename MatrixType>
void BDCSVD<MatrixType>::perturbCol0
   (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
{
  using std::sqrt;
  Index n = col0.size();
  Index m = perm.size();
  if(m==0)
  {
    zhat.setZero();
    return;
  }
  Index last = perm(m-1);
  // The offset permits to skip deflated entries while computing zhat
  for (Index k = 0; k < n; ++k)
  {
    if (col0(k) == Literal(0)) // deflated
      zhat(k) = Literal(0);
    else
    {
      // see equation (3.6)
      RealScalar dk = diag(k);
      RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));

      for(Index l = 0; l<m; ++l)
      {
        Index i = perm(l);
        if(i!=k)
        {
          Index j = i<k ? i : perm(l-1);
          prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
          if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
            std::cout << "     " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
                       << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
#endif
        }
      }
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "zhat(" << k << ") =  sqrt( " << prod << ")  ;  " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
#endif
      RealScalar tmp = sqrt(prod);
      zhat(k) = col0(k) > Literal(0) ? tmp : -tmp;
    }
  }
}

// compute singular vectors
template <typename MatrixType>
void BDCSVD<MatrixType>::computeSingVecs
   (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
{
  Index n = zhat.size();
  Index m = perm.size();
  
  for (Index k = 0; k < n; ++k)
  {
    if (zhat(k) == Literal(0))
    {
      U.col(k) = VectorType::Unit(n+1, k);
      if (m_compV) V.col(k) = VectorType::Unit(n, k);
    }
    else
    {
      U.col(k).setZero();
      for(Index l=0;l<m;++l)
      {
        Index i = perm(l);
        U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
      }
      U(n,k) = Literal(0);
      U.col(k).normalize();
    
      if (m_compV)
      {
        V.col(k).setZero();
        for(Index l=1;l<m;++l)
        {
          Index i = perm(l);
          V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
        }
        V(0,k) = Literal(-1);
        V.col(k).normalize();
      }
    }
  }
  U.col(n) = VectorType::Unit(n+1, n);
}


// page 12_13
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
{
  using std::abs;
  using std::sqrt;
  using std::pow;
  Index start = firstCol + shift;
  RealScalar c = m_computed(start, start);
  RealScalar s = m_computed(start+i, start);
  RealScalar r = numext::hypot(c,s);
  if (r == Literal(0))
  {
    m_computed(start+i, start+i) = Literal(0);
    return;
  }
  m_computed(start,start) = r;  
  m_computed(start+i, start) = Literal(0);
  m_computed(start+i, start+i) = Literal(0);
  
  JacobiRotation<RealScalar> J(c/r,-s/r);
  if (m_compU)  m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
  else          m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
}// end deflation 43


// page 13
// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
// TODO deflation44 is still broken and not properly tested
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
{
  using std::abs;
  using std::sqrt;
  using std::conj;
  using std::pow;
  RealScalar c = m_computed(firstColm+i, firstColm);
  RealScalar s = m_computed(firstColm+j, firstColm);
  RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
    << m_computed(firstColm + i-1, firstColm)  << " "
    << m_computed(firstColm + i, firstColm)  << " "
    << m_computed(firstColm + i+1, firstColm) << " "
    << m_computed(firstColm + i+2, firstColm) << "\n";
  std::cout << m_computed(firstColm + i-1, firstColm + i-1)  << " "
    << m_computed(firstColm + i, firstColm+i)  << " "
    << m_computed(firstColm + i+1, firstColm+i+1) << " "
    << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
#endif
  if (r==Literal(0))
  {
    m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
    return;
  }
  c/=r;
  s/=r;
  m_computed(firstColm + i, firstColm) = r;  
  m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
  m_computed(firstColm + j, firstColm) = Literal(0);

  JacobiRotation<RealScalar> J(c,-s);
  if (m_compU)  m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
  else          m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
  if (m_compV)  m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
}// end deflation 44


// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
{
  using std::sqrt;
  using std::abs;
  const Index length = lastCol + 1 - firstCol;
  
  Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
  Diagonal<MatrixXr> fulldiag(m_computed);
  VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
  
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
  RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
  RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif

#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE  
  std::cout << "\ndeflate:" << diag.head(k+1).transpose() << "  |  " << diag.segment(k+1,length-k-1).transpose() << "\n";
#endif
  
  //condition 4.1
  if (diag(0) < epsilon_coarse)
  { 
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
#endif
    diag(0) = epsilon_coarse;
  }

  //condition 4.2
  for (Index i=1;i<length;++i)
    if (abs(col0(i)) < epsilon_strict)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << "  (diag(" << i << ")=" << diag(i) << ")\n";
#endif
      col0(i) = Literal(0);
    }

  //condition 4.3
  for (Index i=1;i<length; i++)
    if (diag(i) < epsilon_coarse)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
#endif
      deflation43(firstCol, shift, i, length);
    }

#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "to be sorted: " << diag.transpose() << "\n\n";
#endif
  {
    // Check for total deflation
    // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
    bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
    
    // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
    // First, compute the respective permutation.
    Index *permutation = m_workspaceI.data();
    {
      permutation[0] = 0;
      Index p = 1;
      
      // Move deflated diagonal entries at the end.
      for(Index i=1; i<length; ++i)
        if(abs(diag(i))<considerZero)
          permutation[p++] = i;
        
      Index i=1, j=k+1;
      for( ; p < length; ++p)
      {
             if (i > k)             permutation[p] = j++;
        else if (j >= length)       permutation[p] = i++;
        else if (diag(i) < diag(j)) permutation[p] = j++;
        else                        permutation[p] = i++;
      }
    }
    
    // If we have a total deflation, then we have to insert diag(0) at the right place
    if(total_deflation)
    {
      for(Index i=1; i<length; ++i)
      {
        Index pi = permutation[i];
        if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
          permutation[i-1] = permutation[i];
        else
        {
          permutation[i-1] = 0;
          break;
        }
      }
    }
    
    // Current index of each col, and current column of each index
    Index *realInd = m_workspaceI.data()+length;
    Index *realCol = m_workspaceI.data()+2*length;
    
    for(int pos = 0; pos< length; pos++)
    {
      realCol[pos] = pos;
      realInd[pos] = pos;
    }
    
    for(Index i = total_deflation?0:1; i < length; i++)
    {
      const Index pi = permutation[length - (total_deflation ? i+1 : i)];
      const Index J = realCol[pi];
      
      using std::swap;
      // swap diagonal and first column entries:
      swap(diag(i), diag(J));
      if(i!=0 && J!=0) swap(col0(i), col0(J));

      // change columns
      if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
      else         m_naiveU.col(firstCol+i).segment(0, 2)                .swap(m_naiveU.col(firstCol+J).segment(0, 2));
      if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));

      //update real pos
      const Index realI = realInd[i];
      realCol[realI] = J;
      realCol[pi] = i;
      realInd[J] = realI;
      realInd[i] = pi;
    }
  }
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
  std::cout << "      : " << col0.transpose() << "\n\n";
#endif
    
  //condition 4.4
  {
    Index i = length-1;
    while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
    for(; i>1;--i)
       if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
      {
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
        std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
#endif
        eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
        deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
      }
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  for(Index j=2;j<length;++j)
    assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
}//end deflation

#ifndef __CUDACC__
/** \svd_module
  *
  * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
  *
  * \sa class BDCSVD
  */
template<typename Derived>
BDCSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
  return BDCSVD<PlainObject>(*this, computationOptions);
}
#endif

} // end namespace Eigen

#endif