minidump_generator.cc 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <algorithm>
#include <cstdio>

#include <mach/host_info.h>
#include <mach/machine.h>
#include <mach/vm_statistics.h>
#include <mach-o/dyld.h>
#include <mach-o/loader.h>
#include <sys/sysctl.h>
#include <sys/resource.h>

#include <CoreFoundation/CoreFoundation.h>

#include "client/mac/handler/minidump_generator.h"

#if defined(HAS_ARM_SUPPORT) || defined(HAS_ARM64_SUPPORT)
#include <mach/arm/thread_status.h>
#endif
#ifdef HAS_PPC_SUPPORT
#include <mach/ppc/thread_status.h>
#endif
#ifdef HAS_X86_SUPPORT
#include <mach/i386/thread_status.h>
#endif

#include "client/minidump_file_writer-inl.h"
#include "common/mac/file_id.h"
#include "common/mac/macho_id.h"
#include "common/mac/string_utilities.h"

using MacStringUtils::ConvertToString;
using MacStringUtils::IntegerValueAtIndex;

namespace google_breakpad {

#if defined(__LP64__) && __LP64__
#define LC_SEGMENT_ARCH LC_SEGMENT_64
#else
#define LC_SEGMENT_ARCH LC_SEGMENT
#endif

// constructor when generating from within the crashed process
MinidumpGenerator::MinidumpGenerator()
    : writer_(),
      exception_type_(0),
      exception_code_(0),
      exception_subcode_(0),
      exception_thread_(0),
      crashing_task_(mach_task_self()),
      handler_thread_(mach_thread_self()),
      cpu_type_(DynamicImages::GetNativeCPUType()),
      task_context_(NULL),
      dynamic_images_(NULL),
      memory_blocks_(&allocator_) {
  GatherSystemInformation();
}

// constructor when generating from a different process than the
// crashed process
MinidumpGenerator::MinidumpGenerator(mach_port_t crashing_task,
                                     mach_port_t handler_thread)
    : writer_(),
      exception_type_(0),
      exception_code_(0),
      exception_subcode_(0),
      exception_thread_(0),
      crashing_task_(crashing_task),
      handler_thread_(handler_thread),
      cpu_type_(DynamicImages::GetNativeCPUType()),
      task_context_(NULL),
      dynamic_images_(NULL),
      memory_blocks_(&allocator_) {
  if (crashing_task != mach_task_self()) {
    dynamic_images_ = new DynamicImages(crashing_task_);
    cpu_type_ = dynamic_images_->GetCPUType();
  } else {
    dynamic_images_ = NULL;
    cpu_type_ = DynamicImages::GetNativeCPUType();
  }

  GatherSystemInformation();
}

MinidumpGenerator::~MinidumpGenerator() {
  delete dynamic_images_;
}

char MinidumpGenerator::build_string_[16];
int MinidumpGenerator::os_major_version_ = 0;
int MinidumpGenerator::os_minor_version_ = 0;
int MinidumpGenerator::os_build_number_ = 0;

// static
void MinidumpGenerator::GatherSystemInformation() {
  // If this is non-zero, then we've already gathered the information
  if (os_major_version_)
    return;

  // This code extracts the version and build information from the OS
  CFStringRef vers_path =
    CFSTR("/System/Library/CoreServices/SystemVersion.plist");
  CFURLRef sys_vers =
    CFURLCreateWithFileSystemPath(NULL,
                                  vers_path,
                                  kCFURLPOSIXPathStyle,
                                  false);
  CFReadStreamRef read_stream = CFReadStreamCreateWithFile(NULL, sys_vers);
  CFRelease(sys_vers);
  if (!read_stream) {
    return;
  }
  if (!CFReadStreamOpen(read_stream)) {
    CFRelease(read_stream);
    return;
  }
  CFMutableDataRef data = NULL;
  while (true) {
    // Actual data file tests: Mac at 480 bytes and iOS at 413 bytes.
    const CFIndex kMaxBufferLength = 1024;
    UInt8 data_bytes[kMaxBufferLength];
    CFIndex num_bytes_read =
      CFReadStreamRead(read_stream, data_bytes, kMaxBufferLength);
    if (num_bytes_read < 0) {
      if (data) {
        CFRelease(data);
        data = NULL;
      }
      break;
    } else if (num_bytes_read == 0) {
      break;
    } else if (!data) {
      data = CFDataCreateMutable(NULL, 0);
    }
    CFDataAppendBytes(data, data_bytes, num_bytes_read);
  }
  CFReadStreamClose(read_stream);
  CFRelease(read_stream);
  if (!data) {
    return;
  }
  CFDictionaryRef list =
      static_cast<CFDictionaryRef>(CFPropertyListCreateWithData(
          NULL, data, kCFPropertyListImmutable, NULL, NULL));
  CFRelease(data);
  if (!list) {
    return;
  }
  CFStringRef build_version = static_cast<CFStringRef>
    (CFDictionaryGetValue(list, CFSTR("ProductBuildVersion")));
  CFStringRef product_version = static_cast<CFStringRef>
    (CFDictionaryGetValue(list, CFSTR("ProductVersion")));
  string build_str = ConvertToString(build_version);
  string product_str = ConvertToString(product_version);

  CFRelease(list);

  strlcpy(build_string_, build_str.c_str(), sizeof(build_string_));

  // Parse the string that looks like "10.4.8"
  os_major_version_ = IntegerValueAtIndex(product_str, 0);
  os_minor_version_ = IntegerValueAtIndex(product_str, 1);
  os_build_number_ = IntegerValueAtIndex(product_str, 2);
}

void MinidumpGenerator::SetTaskContext(breakpad_ucontext_t *task_context) {
  task_context_ = task_context;
}

string MinidumpGenerator::UniqueNameInDirectory(const string &dir,
                                                string *unique_name) {
  CFUUIDRef uuid = CFUUIDCreate(NULL);
  CFStringRef uuid_cfstr = CFUUIDCreateString(NULL, uuid);
  CFRelease(uuid);
  string file_name(ConvertToString(uuid_cfstr));
  CFRelease(uuid_cfstr);
  string path(dir);

  // Ensure that the directory (if non-empty) has a trailing slash so that
  // we can append the file name and have a valid pathname.
  if (!dir.empty()) {
    if (dir.at(dir.size() - 1) != '/')
      path.append(1, '/');
  }

  path.append(file_name);
  path.append(".dmp");

  if (unique_name)
    *unique_name = file_name;

  return path;
}

bool MinidumpGenerator::Write(const char *path) {
  WriteStreamFN writers[] = {
    &MinidumpGenerator::WriteThreadListStream,
    &MinidumpGenerator::WriteMemoryListStream,
    &MinidumpGenerator::WriteSystemInfoStream,
    &MinidumpGenerator::WriteModuleListStream,
    &MinidumpGenerator::WriteMiscInfoStream,
    &MinidumpGenerator::WriteBreakpadInfoStream,
    // Exception stream needs to be the last entry in this array as it may
    // be omitted in the case where the minidump is written without an
    // exception.
    &MinidumpGenerator::WriteExceptionStream,
  };
  bool result = false;

  // If opening was successful, create the header, directory, and call each
  // writer.  The destructor for the TypedMDRVAs will cause the data to be
  // flushed.  The destructor for the MinidumpFileWriter will close the file.
  if (writer_.Open(path)) {
    TypedMDRVA<MDRawHeader> header(&writer_);
    TypedMDRVA<MDRawDirectory> dir(&writer_);

    if (!header.Allocate())
      return false;

    int writer_count = static_cast<int>(sizeof(writers) / sizeof(writers[0]));

    // If we don't have exception information, don't write out the
    // exception stream
    if (!exception_thread_ && !exception_type_)
      --writer_count;

    // Add space for all writers
    if (!dir.AllocateArray(writer_count))
      return false;

    MDRawHeader *header_ptr = header.get();
    header_ptr->signature = MD_HEADER_SIGNATURE;
    header_ptr->version = MD_HEADER_VERSION;
    time(reinterpret_cast<time_t *>(&(header_ptr->time_date_stamp)));
    header_ptr->stream_count = writer_count;
    header_ptr->stream_directory_rva = dir.position();

    MDRawDirectory local_dir;
    result = true;
    for (int i = 0; (result) && (i < writer_count); ++i) {
      result = (this->*writers[i])(&local_dir);

      if (result)
        dir.CopyIndex(i, &local_dir);
    }
  }
  return result;
}

size_t MinidumpGenerator::CalculateStackSize(mach_vm_address_t start_addr) {
  mach_vm_address_t stack_region_base = start_addr;
  mach_vm_size_t stack_region_size;
  natural_t nesting_level = 0;
  vm_region_submap_info_64 submap_info;
  mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT_64;

  vm_region_recurse_info_t region_info;
  region_info = reinterpret_cast<vm_region_recurse_info_t>(&submap_info);

  if (start_addr == 0) {
    return 0;
  }

  kern_return_t result =
    mach_vm_region_recurse(crashing_task_, &stack_region_base,
                           &stack_region_size, &nesting_level,
                           region_info, &info_count);

  if (result != KERN_SUCCESS || start_addr < stack_region_base) {
    // Failure or stack corruption, since mach_vm_region had to go
    // higher in the process address space to find a valid region.
    return 0;
  }

  unsigned int tag = submap_info.user_tag;

  // If the user tag is VM_MEMORY_STACK, look for more readable regions with
  // the same tag placed immediately above the computed stack region. Under
  // some circumstances, the stack for thread 0 winds up broken up into
  // multiple distinct abutting regions. This can happen for several reasons,
  // including user code that calls setrlimit(RLIMIT_STACK, ...) or changes
  // the access on stack pages by calling mprotect.
  if (tag == VM_MEMORY_STACK) {
    while (true) {
      mach_vm_address_t next_region_base = stack_region_base +
                                           stack_region_size;
      mach_vm_address_t proposed_next_region_base = next_region_base;
      mach_vm_size_t next_region_size;
      nesting_level = 0;
      info_count = VM_REGION_SUBMAP_INFO_COUNT_64;
      result = mach_vm_region_recurse(crashing_task_, &next_region_base,
                                      &next_region_size, &nesting_level,
                                      region_info, &info_count);
      if (result != KERN_SUCCESS ||
          next_region_base != proposed_next_region_base ||
          submap_info.user_tag != tag ||
          (submap_info.protection & VM_PROT_READ) == 0) {
        break;
      }

      stack_region_size += next_region_size;
    }
  }

  return stack_region_base + stack_region_size - start_addr;
}

bool MinidumpGenerator::WriteStackFromStartAddress(
    mach_vm_address_t start_addr,
    MDMemoryDescriptor *stack_location) {
  UntypedMDRVA memory(&writer_);

  bool result = false;
  size_t size = CalculateStackSize(start_addr);

  if (size == 0) {
      // In some situations the stack address for the thread can come back 0.
      // In these cases we skip over the threads in question and stuff the
      // stack with a clearly borked value.
      start_addr = 0xDEADBEEF;
      size = 16;
      if (!memory.Allocate(size))
        return false;

      unsigned long long dummy_stack[2];  // Fill dummy stack with 16 bytes of
                                          // junk.
      dummy_stack[0] = 0xDEADBEEF;
      dummy_stack[1] = 0xDEADBEEF;

      result = memory.Copy(dummy_stack, size);
  } else {

    if (!memory.Allocate(size))
      return false;

    if (dynamic_images_) {
      vector<uint8_t> stack_memory;
      if (ReadTaskMemory(crashing_task_,
                         start_addr,
                         size,
                         stack_memory) != KERN_SUCCESS) {
        return false;
      }

      result = memory.Copy(&stack_memory[0], size);
    } else {
      result = memory.Copy(reinterpret_cast<const void *>(start_addr), size);
    }
  }

  stack_location->start_of_memory_range = start_addr;
  stack_location->memory = memory.location();

  return result;
}

bool MinidumpGenerator::WriteStack(breakpad_thread_state_data_t state,
                                   MDMemoryDescriptor *stack_location) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return WriteStackARM(state, stack_location);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return WriteStackARM64(state, stack_location);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return WriteStackPPC(state, stack_location);
    case CPU_TYPE_POWERPC64:
      return WriteStackPPC64(state, stack_location);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return WriteStackX86(state, stack_location);
    case CPU_TYPE_X86_64:
      return WriteStackX86_64(state, stack_location);
#endif
    default:
      return false;
  }
}

bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
                                     MDLocationDescriptor *register_location) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return WriteContextARM(state, register_location);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return WriteContextARM64(state, register_location);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return WriteContextPPC(state, register_location);
    case CPU_TYPE_POWERPC64:
      return WriteContextPPC64(state, register_location);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return WriteContextX86(state, register_location);
    case CPU_TYPE_X86_64:
      return WriteContextX86_64(state, register_location);
#endif
    default:
      return false;
  }
}

uint64_t MinidumpGenerator::CurrentPCForStack(
    breakpad_thread_state_data_t state) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return CurrentPCForStackARM(state);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return CurrentPCForStackARM64(state);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return CurrentPCForStackPPC(state);
    case CPU_TYPE_POWERPC64:
      return CurrentPCForStackPPC64(state);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return CurrentPCForStackX86(state);
    case CPU_TYPE_X86_64:
      return CurrentPCForStackX86_64(state);
#endif
    default:
      assert(0 && "Unknown CPU type!");
      return 0;
  }
}

#ifdef HAS_ARM_SUPPORT
bool MinidumpGenerator::WriteStackARM(breakpad_thread_state_data_t state,
                                      MDMemoryDescriptor *stack_location) {
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, sp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackARM(breakpad_thread_state_data_t state) {
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, pc);
}

bool MinidumpGenerator::WriteContextARM(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextARM> context(&writer_);
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextARM *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_ARM_FULL;

#define AddGPR(a) context_ptr->iregs[a] = REGISTER_FROM_THREADSTATE(machine_state, r[a])

  context_ptr->iregs[13] = REGISTER_FROM_THREADSTATE(machine_state, sp);
  context_ptr->iregs[14] = REGISTER_FROM_THREADSTATE(machine_state, lr);
  context_ptr->iregs[15] = REGISTER_FROM_THREADSTATE(machine_state, pc);
  context_ptr->cpsr = REGISTER_FROM_THREADSTATE(machine_state, cpsr);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
#undef AddGPR

  return true;
}
#endif

#ifdef HAS_ARM64_SUPPORT
bool MinidumpGenerator::WriteStackARM64(breakpad_thread_state_data_t state,
                                        MDMemoryDescriptor *stack_location) {
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, sp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackARM64(breakpad_thread_state_data_t state) {
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, pc);
}

bool
MinidumpGenerator::WriteContextARM64(breakpad_thread_state_data_t state,
                                     MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextARM64> context(&writer_);
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextARM64 *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_ARM64_FULL;

#define AddGPR(a) context_ptr->iregs[a] = \
    REGISTER_FROM_THREADSTATE(machine_state, x[a])

  context_ptr->iregs[29] = REGISTER_FROM_THREADSTATE(machine_state, fp);
  context_ptr->iregs[30] = REGISTER_FROM_THREADSTATE(machine_state, lr);
  context_ptr->iregs[31] = REGISTER_FROM_THREADSTATE(machine_state, sp);
  context_ptr->iregs[32] = REGISTER_FROM_THREADSTATE(machine_state, pc);
  context_ptr->cpsr = REGISTER_FROM_THREADSTATE(machine_state, cpsr);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
#undef AddGPR

  return true;
}
#endif

#ifdef HAS_PCC_SUPPORT
bool MinidumpGenerator::WriteStackPPC(breakpad_thread_state_data_t state,
                                      MDMemoryDescriptor *stack_location) {
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, r1);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

bool MinidumpGenerator::WriteStackPPC64(breakpad_thread_state_data_t state,
                                        MDMemoryDescriptor *stack_location) {
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, r1);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackPPC(breakpad_thread_state_data_t state) {
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, srr0);
}

uint64_t
MinidumpGenerator::CurrentPCForStackPPC64(breakpad_thread_state_data_t state) {
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, srr0);
}

bool MinidumpGenerator::WriteContextPPC(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextPPC> context(&writer_);
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextPPC *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_PPC_BASE;

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))
#define AddGPR(a) context_ptr->gpr[a] = \
    static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, r ## a)

  AddReg(srr0);
  AddReg(cr);
  AddReg(xer);
  AddReg(ctr);
  AddReg(lr);
  AddReg(vrsave);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
  AddGPR(29);
  AddGPR(30);
  AddGPR(31);
  AddReg(mq);
#undef AddReg
#undef AddGPR

  return true;
}

bool MinidumpGenerator::WriteContextPPC64(
    breakpad_thread_state_data_t state,
    MDLocationDescriptor *register_location) {
  TypedMDRVA<MDRawContextPPC64> context(&writer_);
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextPPC64 *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_PPC_BASE;

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))
#define AddGPR(a) context_ptr->gpr[a] = \
    static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, r ## a)

  AddReg(srr0);
  AddReg(cr);
  AddReg(xer);
  AddReg(ctr);
  AddReg(lr);
  AddReg(vrsave);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
  AddGPR(29);
  AddGPR(30);
  AddGPR(31);
#undef AddReg
#undef AddGPR

  return true;
}

#endif

#ifdef HAS_X86_SUPPORT
bool MinidumpGenerator::WriteStackX86(breakpad_thread_state_data_t state,
                                   MDMemoryDescriptor *stack_location) {
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, esp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

bool MinidumpGenerator::WriteStackX86_64(breakpad_thread_state_data_t state,
                                         MDMemoryDescriptor *stack_location) {
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  mach_vm_address_t start_addr = static_cast<mach_vm_address_t>(
      REGISTER_FROM_THREADSTATE(machine_state, rsp));
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackX86(breakpad_thread_state_data_t state) {
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, eip);
}

uint64_t
MinidumpGenerator::CurrentPCForStackX86_64(breakpad_thread_state_data_t state) {
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, rip);
}

bool MinidumpGenerator::WriteContextX86(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextX86> context(&writer_);
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextX86 *context_ptr = context.get();

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))

  context_ptr->context_flags = MD_CONTEXT_X86;
  AddReg(eax);
  AddReg(ebx);
  AddReg(ecx);
  AddReg(edx);
  AddReg(esi);
  AddReg(edi);
  AddReg(ebp);
  AddReg(esp);

  AddReg(cs);
  AddReg(ds);
  AddReg(ss);
  AddReg(es);
  AddReg(fs);
  AddReg(gs);
  AddReg(eflags);

  AddReg(eip);
#undef AddReg

  return true;
}

bool MinidumpGenerator::WriteContextX86_64(
    breakpad_thread_state_data_t state,
    MDLocationDescriptor *register_location) {
  TypedMDRVA<MDRawContextAMD64> context(&writer_);
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextAMD64 *context_ptr = context.get();

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))

  context_ptr->context_flags = MD_CONTEXT_AMD64;
  AddReg(rax);
  AddReg(rbx);
  AddReg(rcx);
  AddReg(rdx);
  AddReg(rdi);
  AddReg(rsi);
  AddReg(rbp);
  AddReg(rsp);
  AddReg(r8);
  AddReg(r9);
  AddReg(r10);
  AddReg(r11);
  AddReg(r12);
  AddReg(r13);
  AddReg(r14);
  AddReg(r15);
  AddReg(rip);
  // according to AMD's software developer guide, bits above 18 are
  // not used in the flags register.  Since the minidump format
  // specifies 32 bits for the flags register, we can truncate safely
  // with no loss.
  context_ptr->eflags = static_cast<uint32_t>(REGISTER_FROM_THREADSTATE(machine_state, rflags));
  AddReg(cs);
  AddReg(fs);
  AddReg(gs);
#undef AddReg

  return true;
}
#endif

bool MinidumpGenerator::GetThreadState(thread_act_t target_thread,
                                       thread_state_t state,
                                       mach_msg_type_number_t *count) {
  if (task_context_ && target_thread == mach_thread_self()) {
    switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
      case CPU_TYPE_ARM:
        size_t final_size =
            std::min(static_cast<size_t>(*count), sizeof(arm_thread_state_t));
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
#endif
#ifdef HAS_ARM64_SUPPORT
      case CPU_TYPE_ARM64: {
        size_t final_size =
            std::min(static_cast<size_t>(*count), sizeof(arm_thread_state64_t));
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
      }
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
    case CPU_TYPE_X86_64: {
        size_t state_size = cpu_type_ == CPU_TYPE_I386 ?
            sizeof(i386_thread_state_t) : sizeof(x86_thread_state64_t);
        size_t final_size =
            std::min(static_cast<size_t>(*count), state_size);
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
      }
#endif
    }
  }

  thread_state_flavor_t flavor;
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      flavor = ARM_THREAD_STATE;
      break;
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      flavor = ARM_THREAD_STATE64;
      break;
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      flavor = PPC_THREAD_STATE;
      break;
    case CPU_TYPE_POWERPC64:
      flavor = PPC_THREAD_STATE64;
      break;
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      flavor = i386_THREAD_STATE;
      break;
    case CPU_TYPE_X86_64:
      flavor = x86_THREAD_STATE64;
      break;
#endif
    default:
      return false;
  }
  return thread_get_state(target_thread, flavor,
                          state, count) == KERN_SUCCESS;
}

bool MinidumpGenerator::WriteThreadStream(mach_port_t thread_id,
                                          MDRawThread *thread) {
  breakpad_thread_state_data_t state;
  mach_msg_type_number_t state_count
      = static_cast<mach_msg_type_number_t>(sizeof(state));

  if (GetThreadState(thread_id, state, &state_count)) {
    if (!WriteStack(state, &thread->stack))
      return false;

    memory_blocks_.push_back(thread->stack);

    if (!WriteContext(state, &thread->thread_context))
      return false;

    thread->thread_id = thread_id;
  } else {
    return false;
  }

  return true;
}

bool MinidumpGenerator::WriteThreadListStream(
    MDRawDirectory *thread_list_stream) {
  TypedMDRVA<MDRawThreadList> list(&writer_);
  thread_act_port_array_t threads_for_task;
  mach_msg_type_number_t thread_count;
  int non_generator_thread_count;

  if (task_threads(crashing_task_, &threads_for_task, &thread_count))
    return false;

  // Don't include the generator thread
  if (handler_thread_ != MACH_PORT_NULL)
    non_generator_thread_count = thread_count - 1;
  else
    non_generator_thread_count = thread_count;
  if (!list.AllocateObjectAndArray(non_generator_thread_count,
                                   sizeof(MDRawThread)))
    return false;

  thread_list_stream->stream_type = MD_THREAD_LIST_STREAM;
  thread_list_stream->location = list.location();

  list.get()->number_of_threads = non_generator_thread_count;

  MDRawThread thread;
  int thread_idx = 0;

  for (unsigned int i = 0; i < thread_count; ++i) {
    memset(&thread, 0, sizeof(MDRawThread));

    if (threads_for_task[i] != handler_thread_) {
      if (!WriteThreadStream(threads_for_task[i], &thread))
        return false;

      list.CopyIndexAfterObject(thread_idx++, &thread, sizeof(MDRawThread));
    }
  }

  return true;
}

bool MinidumpGenerator::WriteMemoryListStream(
    MDRawDirectory *memory_list_stream) {
  TypedMDRVA<MDRawMemoryList> list(&writer_);

  // If the dump has an exception, include some memory around the
  // instruction pointer.
  const size_t kIPMemorySize = 256;  // bytes
  bool have_ip_memory = false;
  MDMemoryDescriptor ip_memory_d;
  if (exception_thread_ && exception_type_) {
    breakpad_thread_state_data_t state;
    mach_msg_type_number_t stateCount
      = static_cast<mach_msg_type_number_t>(sizeof(state));

    if (GetThreadState(exception_thread_, state, &stateCount)) {
      uint64_t ip = CurrentPCForStack(state);
      // Bound it to the upper and lower bounds of the region
      // it's contained within. If it's not in a known memory region,
      // don't bother trying to write it.
      mach_vm_address_t addr = static_cast<vm_address_t>(ip);
      mach_vm_size_t size;
      natural_t nesting_level = 0;
      vm_region_submap_info_64 info;
      mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT_64;
      vm_region_recurse_info_t recurse_info;
      recurse_info = reinterpret_cast<vm_region_recurse_info_t>(&info);

      kern_return_t ret =
        mach_vm_region_recurse(crashing_task_,
                               &addr,
                               &size,
                               &nesting_level,
                               recurse_info,
                               &info_count);
      if (ret == KERN_SUCCESS && ip >= addr && ip < (addr + size)) {
        // Try to get 128 bytes before and after the IP, but
        // settle for whatever's available.
        ip_memory_d.start_of_memory_range =
          std::max(uintptr_t(addr),
                   uintptr_t(ip - (kIPMemorySize / 2)));
        uintptr_t end_of_range = 
          std::min(uintptr_t(ip + (kIPMemorySize / 2)),
                   uintptr_t(addr + size));
        uintptr_t range_diff = end_of_range -
            static_cast<uintptr_t>(ip_memory_d.start_of_memory_range);
        ip_memory_d.memory.data_size = static_cast<uint32_t>(range_diff);
        have_ip_memory = true;
        // This needs to get appended to the list even though
        // the memory bytes aren't filled in yet so the entire
        // list can be written first. The memory bytes will get filled
        // in after the memory list is written.
        memory_blocks_.push_back(ip_memory_d);
      }
    }
  }

  // Now fill in the memory list and write it.
  size_t memory_count = memory_blocks_.size();
  if (!list.AllocateObjectAndArray(memory_count,
                                   sizeof(MDMemoryDescriptor)))
    return false;

  memory_list_stream->stream_type = MD_MEMORY_LIST_STREAM;
  memory_list_stream->location = list.location();

  list.get()->number_of_memory_ranges = static_cast<uint32_t>(memory_count);

  unsigned int i;
  for (i = 0; i < memory_count; ++i) {
    list.CopyIndexAfterObject(i, &memory_blocks_[i],
                              sizeof(MDMemoryDescriptor));
  }

  if (have_ip_memory) {
    // Now read the memory around the instruction pointer.
    UntypedMDRVA ip_memory(&writer_);
    if (!ip_memory.Allocate(ip_memory_d.memory.data_size))
      return false;

    if (dynamic_images_) {
      // Out-of-process.
      vector<uint8_t> memory;
      if (ReadTaskMemory(crashing_task_,
                         ip_memory_d.start_of_memory_range,
                         ip_memory_d.memory.data_size,
                         memory) != KERN_SUCCESS) {
        return false;
      }

      ip_memory.Copy(&memory[0], ip_memory_d.memory.data_size);
    } else {
      // In-process, just copy from local memory.
      ip_memory.Copy(
        reinterpret_cast<const void *>(ip_memory_d.start_of_memory_range),
        ip_memory_d.memory.data_size);
    }

    ip_memory_d.memory = ip_memory.location();
    // Write this again now that the data location is filled in.
    list.CopyIndexAfterObject(i - 1, &ip_memory_d,
                              sizeof(MDMemoryDescriptor));
  }

  return true;
}

bool
MinidumpGenerator::WriteExceptionStream(MDRawDirectory *exception_stream) {
  TypedMDRVA<MDRawExceptionStream> exception(&writer_);

  if (!exception.Allocate())
    return false;

  exception_stream->stream_type = MD_EXCEPTION_STREAM;
  exception_stream->location = exception.location();
  MDRawExceptionStream *exception_ptr = exception.get();
  exception_ptr->thread_id = exception_thread_;

  // This naming is confusing, but it is the proper translation from
  // mach naming to minidump naming.
  exception_ptr->exception_record.exception_code = exception_type_;
  exception_ptr->exception_record.exception_flags = exception_code_;

  breakpad_thread_state_data_t state;
  mach_msg_type_number_t state_count
      = static_cast<mach_msg_type_number_t>(sizeof(state));

  if (!GetThreadState(exception_thread_, state, &state_count))
    return false;

  if (!WriteContext(state, &exception_ptr->thread_context))
    return false;

  if (exception_type_ == EXC_BAD_ACCESS)
    exception_ptr->exception_record.exception_address = exception_subcode_;
  else
    exception_ptr->exception_record.exception_address = CurrentPCForStack(state);

  return true;
}

bool MinidumpGenerator::WriteSystemInfoStream(
    MDRawDirectory *system_info_stream) {
  TypedMDRVA<MDRawSystemInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  system_info_stream->stream_type = MD_SYSTEM_INFO_STREAM;
  system_info_stream->location = info.location();

  // CPU Information
  uint32_t number_of_processors;
  size_t len = sizeof(number_of_processors);
  sysctlbyname("hw.ncpu", &number_of_processors, &len, NULL, 0);
  MDRawSystemInfo *info_ptr = info.get();

  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_ARM;
      break;
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_ARM64;
      break;
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
    case CPU_TYPE_POWERPC64:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_PPC;
      break;
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
    case CPU_TYPE_X86_64:
      if (cpu_type_ == CPU_TYPE_I386)
        info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_X86;
      else
        info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_AMD64;
#ifdef __i386__
      // ebx is used for PIC code, so we need
      // to preserve it.
#define cpuid(op,eax,ebx,ecx,edx)      \
  asm ("pushl %%ebx   \n\t"            \
       "cpuid         \n\t"            \
       "movl %%ebx,%1 \n\t"            \
       "popl %%ebx"                    \
       : "=a" (eax),                   \
         "=g" (ebx),                   \
         "=c" (ecx),                   \
         "=d" (edx)                    \
       : "0" (op))
#elif defined(__x86_64__)

#define cpuid(op,eax,ebx,ecx,edx)      \
  asm ("cpuid         \n\t"            \
       : "=a" (eax),                   \
         "=b" (ebx),                   \
         "=c" (ecx),                   \
         "=d" (edx)                    \
       : "0" (op))
#endif

#if defined(__i386__) || defined(__x86_64__)
      int unused, unused2;
      // get vendor id
      cpuid(0, unused, info_ptr->cpu.x86_cpu_info.vendor_id[0],
            info_ptr->cpu.x86_cpu_info.vendor_id[2],
            info_ptr->cpu.x86_cpu_info.vendor_id[1]);
      // get version and feature info
      cpuid(1, info_ptr->cpu.x86_cpu_info.version_information, unused, unused2,
            info_ptr->cpu.x86_cpu_info.feature_information);

      // family
      info_ptr->processor_level =
        (info_ptr->cpu.x86_cpu_info.version_information & 0xF00) >> 8;
      // 0xMMSS (Model, Stepping)
      info_ptr->processor_revision = static_cast<uint16_t>(
          (info_ptr->cpu.x86_cpu_info.version_information & 0xF) |
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xF0) << 4));

      // decode extended model info
      if (info_ptr->processor_level == 0xF ||
          info_ptr->processor_level == 0x6) {
        info_ptr->processor_revision |=
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xF0000) >> 4);
      }

      // decode extended family info
      if (info_ptr->processor_level == 0xF) {
        info_ptr->processor_level +=
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xFF00000) >> 20);
      }

#endif  // __i386__ || __x86_64_
      break;
#endif  // HAS_X86_SUPPORT
    default:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_UNKNOWN;
      break;
  }

  info_ptr->number_of_processors = static_cast<uint8_t>(number_of_processors);
#if TARGET_OS_IPHONE
  info_ptr->platform_id = MD_OS_IOS;
#else
  info_ptr->platform_id = MD_OS_MAC_OS_X;
#endif  // TARGET_OS_IPHONE

  MDLocationDescriptor build_string_loc;

  if (!writer_.WriteString(build_string_, 0,
                           &build_string_loc))
    return false;

  info_ptr->csd_version_rva = build_string_loc.rva;
  info_ptr->major_version = os_major_version_;
  info_ptr->minor_version = os_minor_version_;
  info_ptr->build_number = os_build_number_;

  return true;
}

bool MinidumpGenerator::WriteModuleStream(unsigned int index,
                                          MDRawModule *module) {
  if (dynamic_images_) {
    // we're in a different process than the crashed process
    DynamicImage *image = dynamic_images_->GetImage(index);

    if (!image)
      return false;

    memset(module, 0, sizeof(MDRawModule));

    MDLocationDescriptor string_location;

    string name = image->GetFilePath();
    if (!writer_.WriteString(name.c_str(), 0, &string_location))
      return false;

    module->base_of_image = image->GetVMAddr() + image->GetVMAddrSlide();
    module->size_of_image = static_cast<uint32_t>(image->GetVMSize());
    module->module_name_rva = string_location.rva;

    // We'll skip the executable module, because they don't have
    // LC_ID_DYLIB load commands, and the crash processing server gets
    // version information from the Plist file, anyway.
    if (index != static_cast<uint32_t>(FindExecutableModule())) {
      module->version_info.signature = MD_VSFIXEDFILEINFO_SIGNATURE;
      module->version_info.struct_version |= MD_VSFIXEDFILEINFO_VERSION;
      // Convert MAC dylib version format, which is a 32 bit number, to the
      // format used by minidump.  The mac format is <16 bits>.<8 bits>.<8 bits>
      // so it fits nicely into the windows version with some massaging
      // The mapping is:
      //    1) upper 16 bits of MAC version go to lower 16 bits of product HI
      //    2) Next most significant 8 bits go to upper 16 bits of product LO
      //    3) Least significant 8 bits go to lower 16 bits of product LO
      uint32_t modVersion = image->GetVersion();
      module->version_info.file_version_hi = 0;
      module->version_info.file_version_hi = modVersion >> 16;
      module->version_info.file_version_lo |= (modVersion & 0xff00)  << 8;
      module->version_info.file_version_lo |= (modVersion & 0xff);
    }

    if (!WriteCVRecord(module, image->GetCPUType(), name.c_str(), false)) {
      return false;
    }
  } else {
    // Getting module info in the crashed process
    const breakpad_mach_header *header;
    header = (breakpad_mach_header*)_dyld_get_image_header(index);
    if (!header)
      return false;

#ifdef __LP64__
    assert(header->magic == MH_MAGIC_64);

    if(header->magic != MH_MAGIC_64)
      return false;
#else
    assert(header->magic == MH_MAGIC);

    if(header->magic != MH_MAGIC)
      return false;
#endif

    int cpu_type = header->cputype;
    unsigned long slide = _dyld_get_image_vmaddr_slide(index);
    const char* name = _dyld_get_image_name(index);
    const struct load_command *cmd =
        reinterpret_cast<const struct load_command *>(header + 1);

    memset(module, 0, sizeof(MDRawModule));

    for (unsigned int i = 0; cmd && (i < header->ncmds); i++) {
      if (cmd->cmd == LC_SEGMENT_ARCH) {

        const breakpad_mach_segment_command *seg =
            reinterpret_cast<const breakpad_mach_segment_command *>(cmd);

        if (!strcmp(seg->segname, "__TEXT")) {
          MDLocationDescriptor string_location;

          if (!writer_.WriteString(name, 0, &string_location))
            return false;

          module->base_of_image = seg->vmaddr + slide;
          module->size_of_image = static_cast<uint32_t>(seg->vmsize);
          module->module_name_rva = string_location.rva;

          bool in_memory = false;
#if TARGET_OS_IPHONE
          in_memory = true;
#endif
          if (!WriteCVRecord(module, cpu_type, name, in_memory))
            return false;

          return true;
        }
      }

      cmd = reinterpret_cast<struct load_command*>((char *)cmd + cmd->cmdsize);
    }
  }

  return true;
}

int MinidumpGenerator::FindExecutableModule() {
  if (dynamic_images_) {
    int index = dynamic_images_->GetExecutableImageIndex();

    if (index >= 0) {
      return index;
    }
  } else {
    int image_count = _dyld_image_count();
    const struct mach_header *header;

    for (int index = 0; index < image_count; ++index) {
      header = _dyld_get_image_header(index);

      if (header->filetype == MH_EXECUTE)
        return index;
    }
  }

  // failed - just use the first image
  return 0;
}

bool MinidumpGenerator::WriteCVRecord(MDRawModule *module, int cpu_type,
                                      const char *module_path, bool in_memory) {
  TypedMDRVA<MDCVInfoPDB70> cv(&writer_);

  // Only return the last path component of the full module path
  const char *module_name = strrchr(module_path, '/');

  // Increment past the slash
  if (module_name)
    ++module_name;
  else
    module_name = "<Unknown>";

  size_t module_name_length = strlen(module_name);

  if (!cv.AllocateObjectAndArray(module_name_length + 1, sizeof(uint8_t)))
    return false;

  if (!cv.CopyIndexAfterObject(0, module_name, module_name_length))
    return false;

  module->cv_record = cv.location();
  MDCVInfoPDB70 *cv_ptr = cv.get();
  cv_ptr->cv_signature = MD_CVINFOPDB70_SIGNATURE;
  cv_ptr->age = 0;

  // Get the module identifier
  unsigned char identifier[16];
  bool result = false;
  if (in_memory) {
    MacFileUtilities::MachoID macho(module_path,
        reinterpret_cast<void *>(module->base_of_image),
        static_cast<size_t>(module->size_of_image));
    result = macho.UUIDCommand(cpu_type, CPU_SUBTYPE_MULTIPLE, identifier);
    if (!result)
      result = macho.MD5(cpu_type, CPU_SUBTYPE_MULTIPLE, identifier);
  }

  if (!result) {
     FileID file_id(module_path);
     result = file_id.MachoIdentifier(cpu_type, CPU_SUBTYPE_MULTIPLE,
                                      identifier);
  }

  if (result) {
    cv_ptr->signature.data1 =
        static_cast<uint32_t>(identifier[0]) << 24 |
        static_cast<uint32_t>(identifier[1]) << 16 |
        static_cast<uint32_t>(identifier[2]) << 8 |
        static_cast<uint32_t>(identifier[3]);
    cv_ptr->signature.data2 =
        static_cast<uint16_t>(identifier[4] << 8) | identifier[5];
    cv_ptr->signature.data3 =
        static_cast<uint16_t>(identifier[6] << 8) | identifier[7];
    cv_ptr->signature.data4[0] = identifier[8];
    cv_ptr->signature.data4[1] = identifier[9];
    cv_ptr->signature.data4[2] = identifier[10];
    cv_ptr->signature.data4[3] = identifier[11];
    cv_ptr->signature.data4[4] = identifier[12];
    cv_ptr->signature.data4[5] = identifier[13];
    cv_ptr->signature.data4[6] = identifier[14];
    cv_ptr->signature.data4[7] = identifier[15];
  }

  return true;
}

bool MinidumpGenerator::WriteModuleListStream(
    MDRawDirectory *module_list_stream) {
  TypedMDRVA<MDRawModuleList> list(&writer_);

  uint32_t image_count = dynamic_images_ ?
      dynamic_images_->GetImageCount() :
      _dyld_image_count();

  if (!list.AllocateObjectAndArray(image_count, MD_MODULE_SIZE))
    return false;

  module_list_stream->stream_type = MD_MODULE_LIST_STREAM;
  module_list_stream->location = list.location();
  list.get()->number_of_modules = static_cast<uint32_t>(image_count);

  // Write out the executable module as the first one
  MDRawModule module;
  uint32_t executableIndex = FindExecutableModule();

  if (!WriteModuleStream(static_cast<unsigned>(executableIndex), &module)) {
    return false;
  }

  list.CopyIndexAfterObject(0, &module, MD_MODULE_SIZE);
  int destinationIndex = 1;  // Write all other modules after this one

  for (uint32_t i = 0; i < image_count; ++i) {
    if (i != executableIndex) {
      if (!WriteModuleStream(static_cast<unsigned>(i), &module)) {
        return false;
      }

      list.CopyIndexAfterObject(destinationIndex++, &module, MD_MODULE_SIZE);
    }
  }

  return true;
}

bool MinidumpGenerator::WriteMiscInfoStream(MDRawDirectory *misc_info_stream) {
  TypedMDRVA<MDRawMiscInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  misc_info_stream->stream_type = MD_MISC_INFO_STREAM;
  misc_info_stream->location = info.location();

  MDRawMiscInfo *info_ptr = info.get();
  info_ptr->size_of_info = static_cast<uint32_t>(sizeof(MDRawMiscInfo));
  info_ptr->flags1 = MD_MISCINFO_FLAGS1_PROCESS_ID |
    MD_MISCINFO_FLAGS1_PROCESS_TIMES |
    MD_MISCINFO_FLAGS1_PROCESSOR_POWER_INFO;

  // Process ID
  info_ptr->process_id = getpid();

  // Times
  struct rusage usage;
  if (getrusage(RUSAGE_SELF, &usage) != -1) {
    // Omit the fractional time since the MDRawMiscInfo only wants seconds
    info_ptr->process_user_time =
        static_cast<uint32_t>(usage.ru_utime.tv_sec);
    info_ptr->process_kernel_time =
        static_cast<uint32_t>(usage.ru_stime.tv_sec);
  }
  int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID,
                 static_cast<int>(info_ptr->process_id) };
  uint mibsize = static_cast<uint>(sizeof(mib) / sizeof(mib[0]));
  struct kinfo_proc proc;
  size_t size = sizeof(proc);
  if (sysctl(mib, mibsize, &proc, &size, NULL, 0) == 0) {
    info_ptr->process_create_time =
        static_cast<uint32_t>(proc.kp_proc.p_starttime.tv_sec);
  }

  // Speed
  uint64_t speed;
  const uint64_t kOneMillion = 1000 * 1000;
  size = sizeof(speed);
  sysctlbyname("hw.cpufrequency_max", &speed, &size, NULL, 0);
  info_ptr->processor_max_mhz = static_cast<uint32_t>(speed / kOneMillion);
  info_ptr->processor_mhz_limit = static_cast<uint32_t>(speed / kOneMillion);
  size = sizeof(speed);
  sysctlbyname("hw.cpufrequency", &speed, &size, NULL, 0);
  info_ptr->processor_current_mhz = static_cast<uint32_t>(speed / kOneMillion);

  return true;
}

bool MinidumpGenerator::WriteBreakpadInfoStream(
    MDRawDirectory *breakpad_info_stream) {
  TypedMDRVA<MDRawBreakpadInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  breakpad_info_stream->stream_type = MD_BREAKPAD_INFO_STREAM;
  breakpad_info_stream->location = info.location();
  MDRawBreakpadInfo *info_ptr = info.get();

  if (exception_thread_ && exception_type_) {
    info_ptr->validity = MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID |
                         MD_BREAKPAD_INFO_VALID_REQUESTING_THREAD_ID;
    info_ptr->dump_thread_id = handler_thread_;
    info_ptr->requesting_thread_id = exception_thread_;
  } else {
    info_ptr->validity = MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID;
    info_ptr->dump_thread_id = handler_thread_;
    info_ptr->requesting_thread_id = 0;
  }

  return true;
}

}  // namespace google_breakpad