linux_dumper.cc 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// linux_dumper.cc: Implement google_breakpad::LinuxDumper.
// See linux_dumper.h for details.

// This code deals with the mechanics of getting information about a crashed
// process. Since this code may run in a compromised address space, the same
// rules apply as detailed at the top of minidump_writer.h: no libc calls and
// use the alternative allocator.

#include "client/linux/minidump_writer/linux_dumper.h"

#include <assert.h>
#include <elf.h>
#include <fcntl.h>
#include <limits.h>
#include <stddef.h>
#include <string.h>

#include "client/linux/minidump_writer/line_reader.h"
#include "common/linux/elfutils.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/linux/memory_mapped_file.h"
#include "common/linux/safe_readlink.h"
#include "third_party/lss/linux_syscall_support.h"

#if defined(__ANDROID__)

// Android packed relocations definitions are not yet available from the
// NDK header files, so we have to provide them manually here.
#ifndef DT_LOOS
#define DT_LOOS 0x6000000d
#endif
#ifndef DT_ANDROID_REL
static const int DT_ANDROID_REL = DT_LOOS + 2;
#endif
#ifndef DT_ANDROID_RELA
static const int DT_ANDROID_RELA = DT_LOOS + 4;
#endif

#endif  // __ANDROID __

static const char kMappedFileUnsafePrefix[] = "/dev/";
static const char kDeletedSuffix[] = " (deleted)";

inline static bool IsMappedFileOpenUnsafe(
    const google_breakpad::MappingInfo& mapping) {
  // It is unsafe to attempt to open a mapped file that lives under /dev,
  // because the semantics of the open may be driver-specific so we'd risk
  // hanging the crash dumper. And a file in /dev/ almost certainly has no
  // ELF file identifier anyways.
  return my_strncmp(mapping.name,
                    kMappedFileUnsafePrefix,
                    sizeof(kMappedFileUnsafePrefix) - 1) == 0;
}

namespace google_breakpad {

namespace {

bool MappingContainsAddress(const MappingInfo& mapping, uintptr_t address) {
  return mapping.system_mapping_info.start_addr <= address &&
         address < mapping.system_mapping_info.end_addr;
}

#if defined(__CHROMEOS__)

// Recover memory mappings before writing dump on ChromeOS
//
// On Linux, breakpad relies on /proc/[pid]/maps to associate symbols from
// addresses. ChromeOS' hugepage implementation replaces some segments with
// anonymous private pages, which is a restriction of current implementation
// in Linux kernel at the time of writing. Thus, breakpad can no longer
// symbolize addresses from those text segments replaced with hugepages.
//
// This postprocess tries to recover the mappings. Because hugepages are always
// inserted in between some .text sections, it tries to infer the names and
// offsets of the segments, by looking at segments immediately precede and
// succeed them.
//
// For example, a text segment before hugepage optimization
//   02001000-03002000 r-xp /opt/google/chrome/chrome
//
// can be broken into
//   02001000-02200000 r-xp /opt/google/chrome/chrome
//   02200000-03000000 r-xp
//   03000000-03002000 r-xp /opt/google/chrome/chrome
//
// For more details, see:
// crbug.com/628040 ChromeOS' use of hugepages confuses crash symbolization

// Copied from CrOS' hugepage implementation, which is unlikely to change.
// The hugepage size is 2M.
const unsigned int kHpageShift = 21;
const size_t kHpageSize = (1 << kHpageShift);
const size_t kHpageMask = (~(kHpageSize - 1));

// Find and merge anonymous r-xp segments with surrounding named segments.
// There are two cases:

// Case 1: curr, next
//   curr is anonymous
//   curr is r-xp
//   curr.size >= 2M
//   curr.size is a multiple of 2M.
//   next is backed by some file.
//   curr and next are contiguous.
//   offset(next) == sizeof(curr)
void TryRecoverMappings(MappingInfo *curr, MappingInfo *next) {
  // Merged segments are marked with size = 0.
  if (curr->size == 0 || next->size == 0)
    return;

  if (curr->size >= kHpageSize &&
      curr->exec &&
      (curr->size & kHpageMask) == curr->size &&
      (curr->start_addr & kHpageMask) == curr->start_addr &&
      curr->name[0] == '\0' &&
      next->name[0] != '\0' &&
      curr->start_addr + curr->size == next->start_addr &&
      curr->size == next->offset) {

    // matched
    my_strlcpy(curr->name, next->name, NAME_MAX);
    if (next->exec) {
      // (curr, next)
      curr->size += next->size;
      next->size = 0;
    }
  }
}

// Case 2: prev, curr, next
//   curr is anonymous
//   curr is r-xp
//   curr.size >= 2M
//   curr.size is a multiple of 2M.
//   next and prev are backed by the same file.
//   prev, curr and next are contiguous.
//   offset(next) == offset(prev) + sizeof(prev) + sizeof(curr)
void TryRecoverMappings(MappingInfo *prev, MappingInfo *curr,
    MappingInfo *next) {
  // Merged segments are marked with size = 0.
  if (prev->size == 0 || curr->size == 0 || next->size == 0)
    return;

  if (curr->size >= kHpageSize &&
      curr->exec &&
      (curr->size & kHpageMask) == curr->size &&
      (curr->start_addr & kHpageMask) == curr->start_addr &&
      curr->name[0] == '\0' &&
      next->name[0] != '\0' &&
      curr->start_addr + curr->size == next->start_addr &&
      prev->start_addr + prev->size == curr->start_addr &&
      my_strncmp(prev->name, next->name, NAME_MAX) == 0 &&
      next->offset == prev->offset + prev->size + curr->size) {

    // matched
    my_strlcpy(curr->name, prev->name, NAME_MAX);
    if (prev->exec) {
      curr->offset = prev->offset;
      curr->start_addr = prev->start_addr;
      if (next->exec) {
        // (prev, curr, next)
        curr->size += prev->size + next->size;
        prev->size = 0;
        next->size = 0;
      } else {
        // (prev, curr), next
        curr->size += prev->size;
        prev->size = 0;
      }
    } else {
      curr->offset = prev->offset + prev->size;
      if (next->exec) {
        // prev, (curr, next)
        curr->size += next->size;
        next->size = 0;
      } else {
        // prev, curr, next
      }
    }
  }
}

// mappings_ is sorted excepted for the first entry.
// This function tries to merge segemnts into the first entry,
// then check for other sorted entries.
// See LinuxDumper::EnumerateMappings().
void CrOSPostProcessMappings(wasteful_vector<MappingInfo*>& mappings) {
  // Find the candidate "next" to first segment, which is the only one that
  // could be out-of-order.
  size_t l = 1;
  size_t r = mappings.size();
  size_t next = mappings.size();
  while (l < r) {
    int m = (l + r) / 2;
    if (mappings[m]->start_addr > mappings[0]->start_addr)
      r = next = m;
    else
      l = m + 1;
  }

  // Try to merge segments into the first.
  if (next < mappings.size()) {
    TryRecoverMappings(mappings[0], mappings[next]);
    if (next - 1 > 0)
      TryRecoverMappings(mappings[next - 1], mappings[0], mappings[next]);
  }

  // Iterate through normal, sorted cases.
  // Normal case 1.
  for (size_t i = 1; i < mappings.size() - 1; i++)
    TryRecoverMappings(mappings[i], mappings[i + 1]);

  // Normal case 2.
  for (size_t i = 1; i < mappings.size() - 2; i++)
    TryRecoverMappings(mappings[i], mappings[i + 1], mappings[i + 2]);

  // Collect merged (size == 0) segments.
  size_t f, e;
  for (f = e = 0; e < mappings.size(); e++)
    if (mappings[e]->size > 0)
      mappings[f++] = mappings[e];
  mappings.resize(f);
}

#endif  // __CHROMEOS__

}  // namespace

// All interesting auvx entry types are below AT_SYSINFO_EHDR
#define AT_MAX AT_SYSINFO_EHDR

LinuxDumper::LinuxDumper(pid_t pid, const char* root_prefix)
    : pid_(pid),
      root_prefix_(root_prefix),
      crash_address_(0),
      crash_signal_(0),
      crash_thread_(pid),
      threads_(&allocator_, 8),
      mappings_(&allocator_),
      auxv_(&allocator_, AT_MAX + 1) {
  assert(root_prefix_ && my_strlen(root_prefix_) < PATH_MAX);
  // The passed-in size to the constructor (above) is only a hint.
  // Must call .resize() to do actual initialization of the elements.
  auxv_.resize(AT_MAX + 1);
}

LinuxDumper::~LinuxDumper() {
}

bool LinuxDumper::Init() {
  return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
}

bool LinuxDumper::LateInit() {
#if defined(__ANDROID__)
  LatePostprocessMappings();
#endif

#if defined(__CHROMEOS__)
  CrOSPostProcessMappings(mappings_);
#endif

  return true;
}

bool
LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
                                         bool member,
                                         unsigned int mapping_id,
                                         wasteful_vector<uint8_t>& identifier) {
  assert(!member || mapping_id < mappings_.size());
  if (IsMappedFileOpenUnsafe(mapping))
    return false;

  // Special-case linux-gate because it's not a real file.
  if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
    void* linux_gate = NULL;
    if (pid_ == sys_getpid()) {
      linux_gate = reinterpret_cast<void*>(mapping.start_addr);
    } else {
      linux_gate = allocator_.Alloc(mapping.size);
      CopyFromProcess(linux_gate, pid_,
                      reinterpret_cast<const void*>(mapping.start_addr),
                      mapping.size);
    }
    return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
  }

  char filename[PATH_MAX];
  if (!GetMappingAbsolutePath(mapping, filename))
    return false;
  bool filename_modified = HandleDeletedFileInMapping(filename);

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG)
    return false;

  bool success =
      FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
  if (success && member && filename_modified) {
    mappings_[mapping_id]->name[my_strlen(mapping.name) -
                                sizeof(kDeletedSuffix) + 1] = '\0';
  }

  return success;
}

bool LinuxDumper::GetMappingAbsolutePath(const MappingInfo& mapping,
                                         char path[PATH_MAX]) const {
  return my_strlcpy(path, root_prefix_, PATH_MAX) < PATH_MAX &&
         my_strlcat(path, mapping.name, PATH_MAX) < PATH_MAX;
}

namespace {
bool ElfFileSoNameFromMappedFile(
    const void* elf_base, char* soname, size_t soname_size) {
  if (!IsValidElf(elf_base)) {
    // Not ELF
    return false;
  }

  const void* segment_start;
  size_t segment_size;
  int elf_class;
  if (!FindElfSection(elf_base, ".dynamic", SHT_DYNAMIC,
                      &segment_start, &segment_size, &elf_class)) {
    // No dynamic section
    return false;
  }

  const void* dynstr_start;
  size_t dynstr_size;
  if (!FindElfSection(elf_base, ".dynstr", SHT_STRTAB,
                      &dynstr_start, &dynstr_size, &elf_class)) {
    // No dynstr section
    return false;
  }

  const ElfW(Dyn)* dynamic = static_cast<const ElfW(Dyn)*>(segment_start);
  size_t dcount = segment_size / sizeof(ElfW(Dyn));
  for (const ElfW(Dyn)* dyn = dynamic; dyn < dynamic + dcount; ++dyn) {
    if (dyn->d_tag == DT_SONAME) {
      const char* dynstr = static_cast<const char*>(dynstr_start);
      if (dyn->d_un.d_val >= dynstr_size) {
        // Beyond the end of the dynstr section
        return false;
      }
      const char* str = dynstr + dyn->d_un.d_val;
      const size_t maxsize = dynstr_size - dyn->d_un.d_val;
      my_strlcpy(soname, str, maxsize < soname_size ? maxsize : soname_size);
      return true;
    }
  }

  // Did not find SONAME
  return false;
}

// Find the shared object name (SONAME) by examining the ELF information
// for |mapping|. If the SONAME is found copy it into the passed buffer
// |soname| and return true. The size of the buffer is |soname_size|.
// The SONAME will be truncated if it is too long to fit in the buffer.
bool ElfFileSoName(const LinuxDumper& dumper,
    const MappingInfo& mapping, char* soname, size_t soname_size) {
  if (IsMappedFileOpenUnsafe(mapping)) {
    // Not safe
    return false;
  }

  char filename[PATH_MAX];
  if (!dumper.GetMappingAbsolutePath(mapping, filename))
    return false;

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
    // mmap failed
    return false;
  }

  return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
}

}  // namespace


void LinuxDumper::GetMappingEffectiveNameAndPath(const MappingInfo& mapping,
                                                 char* file_path,
                                                 size_t file_path_size,
                                                 char* file_name,
                                                 size_t file_name_size) {
  my_strlcpy(file_path, mapping.name, file_path_size);

  // If an executable is mapped from a non-zero offset, this is likely because
  // the executable was loaded directly from inside an archive file (e.g., an
  // apk on Android). We try to find the name of the shared object (SONAME) by
  // looking in the file for ELF sections.
  bool mapped_from_archive = false;
  if (mapping.exec && mapping.offset != 0) {
    mapped_from_archive =
        ElfFileSoName(*this, mapping, file_name, file_name_size);
  }

  if (mapped_from_archive) {
    // Some tools (e.g., stackwalk) extract the basename from the pathname. In
    // this case, we append the file_name to the mapped archive path as follows:
    //   file_name := libname.so
    //   file_path := /path/to/ARCHIVE.APK/libname.so
    if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
      my_strlcat(file_path, "/", file_path_size);
      my_strlcat(file_path, file_name, file_path_size);
    }
  } else {
    // Common case:
    //   file_path := /path/to/libname.so
    //   file_name := libname.so
    const char* basename = my_strrchr(file_path, '/');
    basename = basename == NULL ? file_path : (basename + 1);
    my_strlcpy(file_name, basename, file_name_size);
  }
}

bool LinuxDumper::ReadAuxv() {
  char auxv_path[NAME_MAX];
  if (!BuildProcPath(auxv_path, pid_, "auxv")) {
    return false;
  }

  int fd = sys_open(auxv_path, O_RDONLY, 0);
  if (fd < 0) {
    return false;
  }

  elf_aux_entry one_aux_entry;
  bool res = false;
  while (sys_read(fd,
                  &one_aux_entry,
                  sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
         one_aux_entry.a_type != AT_NULL) {
    if (one_aux_entry.a_type <= AT_MAX) {
      auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
      res = true;
    }
  }
  sys_close(fd);
  return res;
}

bool LinuxDumper::EnumerateMappings() {
  char maps_path[NAME_MAX];
  if (!BuildProcPath(maps_path, pid_, "maps"))
    return false;

  // linux_gate_loc is the beginning of the kernel's mapping of
  // linux-gate.so in the process.  It doesn't actually show up in the
  // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
  // aux vector entry, which gives the information necessary to special
  // case its entry when creating the list of mappings.
  // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
  // information.
  const void* linux_gate_loc =
      reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
  // Although the initial executable is usually the first mapping, it's not
  // guaranteed (see http://crosbug.com/25355); therefore, try to use the
  // actual entry point to find the mapping.
  const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);

  const int fd = sys_open(maps_path, O_RDONLY, 0);
  if (fd < 0)
    return false;
  LineReader* const line_reader = new(allocator_) LineReader(fd);

  const char* line;
  unsigned line_len;
  while (line_reader->GetNextLine(&line, &line_len)) {
    uintptr_t start_addr, end_addr, offset;

    const char* i1 = my_read_hex_ptr(&start_addr, line);
    if (*i1 == '-') {
      const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
      if (*i2 == ' ') {
        bool exec = (*(i2 + 3) == 'x');
        const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
        if (*i3 == ' ') {
          const char* name = NULL;
          // Only copy name if the name is a valid path name, or if
          // it's the VDSO image.
          if (((name = my_strchr(line, '/')) == NULL) &&
              linux_gate_loc &&
              reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
            name = kLinuxGateLibraryName;
            offset = 0;
          }
          // Merge adjacent mappings with the same name into one module,
          // assuming they're a single library mapped by the dynamic linker
          if (name && !mappings_.empty()) {
            MappingInfo* module = mappings_.back();
            if ((start_addr == module->start_addr + module->size) &&
                (my_strlen(name) == my_strlen(module->name)) &&
                (my_strncmp(name, module->name, my_strlen(name)) == 0) &&
                (exec == module->exec)) {
              module->size = end_addr - module->start_addr;
              line_reader->PopLine(line_len);
              continue;
            }
          }
          MappingInfo* const module = new(allocator_) MappingInfo;
          my_memset(module, 0, sizeof(MappingInfo));
          module->system_mapping_info.start_addr = start_addr;
          module->system_mapping_info.end_addr = end_addr;
          module->start_addr = start_addr;
          module->size = end_addr - start_addr;
          module->offset = offset;
          module->exec = exec;
          if (name != NULL) {
            const unsigned l = my_strlen(name);
            if (l < sizeof(module->name))
              my_memcpy(module->name, name, l);
          }
          // If this is the entry-point mapping, and it's not already the
          // first one, then we need to make it be first.  This is because
          // the minidump format assumes the first module is the one that
          // corresponds to the main executable (as codified in
          // processor/minidump.cc:MinidumpModuleList::GetMainModule()).
          if (entry_point_loc &&
              (entry_point_loc >=
                  reinterpret_cast<void*>(module->start_addr)) &&
              (entry_point_loc <
                  reinterpret_cast<void*>(module->start_addr+module->size)) &&
              !mappings_.empty()) {
            // push the module onto the front of the list.
            mappings_.resize(mappings_.size() + 1);
            for (size_t idx = mappings_.size() - 1; idx > 0; idx--)
              mappings_[idx] = mappings_[idx - 1];
            mappings_[0] = module;
          } else {
            mappings_.push_back(module);
          }
        }
      }
    }
    line_reader->PopLine(line_len);
  }

  sys_close(fd);

  return !mappings_.empty();
}

#if defined(__ANDROID__)

bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
  CopyFromProcess(ehdr, pid_,
                  reinterpret_cast<const void*>(start_addr),
                  sizeof(*ehdr));
  return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
}

void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
                                               uintptr_t start_addr,
                                               uintptr_t* min_vaddr_ptr,
                                               uintptr_t* dyn_vaddr_ptr,
                                               size_t* dyn_count_ptr) {
  uintptr_t phdr_addr = start_addr + ehdr->e_phoff;

  const uintptr_t max_addr = UINTPTR_MAX;
  uintptr_t min_vaddr = max_addr;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;

  for (size_t i = 0; i < ehdr->e_phnum; ++i) {
    ElfW(Phdr) phdr;
    CopyFromProcess(&phdr, pid_,
                    reinterpret_cast<const void*>(phdr_addr),
                    sizeof(phdr));
    if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
      min_vaddr = phdr.p_vaddr;
    }
    if (phdr.p_type == PT_DYNAMIC) {
      dyn_vaddr = phdr.p_vaddr;
      dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
    }
    phdr_addr += sizeof(phdr);
  }

  *min_vaddr_ptr = min_vaddr;
  *dyn_vaddr_ptr = dyn_vaddr;
  *dyn_count_ptr = dyn_count;
}

bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
                                              uintptr_t dyn_vaddr,
                                              size_t dyn_count) {
  uintptr_t dyn_addr = load_bias + dyn_vaddr;
  for (size_t i = 0; i < dyn_count; ++i) {
    ElfW(Dyn) dyn;
    CopyFromProcess(&dyn, pid_,
                    reinterpret_cast<const void*>(dyn_addr),
                    sizeof(dyn));
    if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
      return true;
    }
    dyn_addr += sizeof(dyn);
  }
  return false;
}

uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
                                            uintptr_t start_addr) {
  uintptr_t min_vaddr = 0;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;
  ParseLoadedElfProgramHeaders(ehdr, start_addr,
                               &min_vaddr, &dyn_vaddr, &dyn_count);
  // If |min_vaddr| is non-zero and we find Android packed relocation tags,
  // return the effective load bias.
  if (min_vaddr != 0) {
    const uintptr_t load_bias = start_addr - min_vaddr;
    if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
      return load_bias;
    }
  }
  // Either |min_vaddr| is zero, or it is non-zero but we did not find the
  // expected Android packed relocations tags.
  return start_addr;
}

void LinuxDumper::LatePostprocessMappings() {
  for (size_t i = 0; i < mappings_.size(); ++i) {
    // Only consider exec mappings that indicate a file path was mapped, and
    // where the ELF header indicates a mapped shared library.
    MappingInfo* mapping = mappings_[i];
    if (!(mapping->exec && mapping->name[0] == '/')) {
      continue;
    }
    ElfW(Ehdr) ehdr;
    if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
      continue;
    }
    if (ehdr.e_type == ET_DYN) {
      // Compute the effective load bias for this mapped library, and update
      // the mapping to hold that rather than |start_addr|, at the same time
      // adjusting |size| to account for the change in |start_addr|. Where
      // the library does not contain Android packed relocations,
      // GetEffectiveLoadBias() returns |start_addr| and the mapping entry
      // is not changed.
      const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
                                                       mapping->start_addr);
      mapping->size += mapping->start_addr - load_bias;
      mapping->start_addr = load_bias;
    }
  }
}

#endif  // __ANDROID__

// Get information about the stack, given the stack pointer. We don't try to
// walk the stack since we might not have all the information needed to do
// unwind. So we just grab, up to, 32k of stack.
bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
                               uintptr_t int_stack_pointer) {
  // Move the stack pointer to the bottom of the page that it's in.
  const uintptr_t page_size = getpagesize();

  uint8_t* const stack_pointer =
      reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));

  // The number of bytes of stack which we try to capture.
  static const ptrdiff_t kStackToCapture = 32 * 1024;

  const MappingInfo* mapping = FindMapping(stack_pointer);
  if (!mapping)
    return false;
  const ptrdiff_t offset = stack_pointer -
      reinterpret_cast<uint8_t*>(mapping->start_addr);
  const ptrdiff_t distance_to_end =
      static_cast<ptrdiff_t>(mapping->size) - offset;
  *stack_len = distance_to_end > kStackToCapture ?
      kStackToCapture : distance_to_end;
  *stack = stack_pointer;
  return true;
}

void LinuxDumper::SanitizeStackCopy(uint8_t* stack_copy, size_t stack_len,
                                    uintptr_t stack_pointer,
                                    uintptr_t sp_offset) {
  // We optimize the search for containing mappings in three ways:
  // 1) We expect that pointers into the stack mapping will be common, so
  //    we cache that address range.
  // 2) The last referenced mapping is a reasonable predictor for the next
  //    referenced mapping, so we test that first.
  // 3) We precompute a bitfield based upon bits 32:32-n of the start and
  //    stop addresses, and use that to short circuit any values that can
  //    not be pointers. (n=11)
  const uintptr_t defaced =
#if defined(__LP64__)
      0x0defaced0defaced;
#else
      0x0defaced;
#endif
  // the bitfield length is 2^test_bits long.
  const unsigned int test_bits = 11;
  // byte length of the corresponding array.
  const unsigned int array_size = 1 << (test_bits - 3);
  const unsigned int array_mask = array_size - 1;
  // The amount to right shift pointers by. This captures the top bits
  // on 32 bit architectures. On 64 bit architectures this would be
  // uninformative so we take the same range of bits.
  const unsigned int shift = 32 - 11;
  const MappingInfo* last_hit_mapping = nullptr;
  const MappingInfo* hit_mapping = nullptr;
  const MappingInfo* stack_mapping = FindMappingNoBias(stack_pointer);
  // The magnitude below which integers are considered to be to be
  // 'small', and not constitute a PII risk. These are included to
  // avoid eliding useful register values.
  const ssize_t small_int_magnitude = 4096;

  char could_hit_mapping[array_size];
  my_memset(could_hit_mapping, 0, array_size);

  // Initialize the bitfield such that if the (pointer >> shift)'th
  // bit, modulo the bitfield size, is not set then there does not
  // exist a mapping in mappings_ that would contain that pointer.
  for (size_t i = 0; i < mappings_.size(); ++i) {
    if (!mappings_[i]->exec) continue;
    // For each mapping, work out the (unmodulo'ed) range of bits to
    // set.
    uintptr_t start = mappings_[i]->start_addr;
    uintptr_t end = start + mappings_[i]->size;
    start >>= shift;
    end >>= shift;
    for (size_t bit = start; bit <= end; ++bit) {
      // Set each bit in the range, applying the modulus.
      could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7);
    }
  }

  // Zero memory that is below the current stack pointer.
  const uintptr_t offset =
      (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
  if (offset) {
    my_memset(stack_copy, 0, offset);
  }

  // Apply sanitization to each complete pointer-aligned word in the
  // stack.
  uint8_t* sp;
  for (sp = stack_copy + offset;
       sp <= stack_copy + stack_len - sizeof(uintptr_t);
       sp += sizeof(uintptr_t)) {
    uintptr_t addr;
    my_memcpy(&addr, sp, sizeof(uintptr_t));
    if (static_cast<intptr_t>(addr) <= small_int_magnitude &&
        static_cast<intptr_t>(addr) >= -small_int_magnitude) {
      continue;
    }
    if (stack_mapping && MappingContainsAddress(*stack_mapping, addr)) {
      continue;
    }
    if (last_hit_mapping && MappingContainsAddress(*last_hit_mapping, addr)) {
      continue;
    }
    uintptr_t test = addr >> shift;
    if (could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) &&
        (hit_mapping = FindMappingNoBias(addr)) != nullptr &&
        hit_mapping->exec) {
      last_hit_mapping = hit_mapping;
      continue;
    }
    my_memcpy(sp, &defaced, sizeof(uintptr_t));
  }
  // Zero any partial word at the top of the stack, if alignment is
  // such that that is required.
  if (sp < stack_copy + stack_len) {
    my_memset(sp, 0, stack_copy + stack_len - sp);
  }
}

bool LinuxDumper::StackHasPointerToMapping(const uint8_t* stack_copy,
                                           size_t stack_len,
                                           uintptr_t sp_offset,
                                           const MappingInfo& mapping) {
  // Loop over all stack words that would have been on the stack in
  // the target process (i.e. are word aligned, and at addresses >=
  // the stack pointer).  Regardless of the alignment of |stack_copy|,
  // the memory starting at |stack_copy| + |offset| represents an
  // aligned word in the target process.
  const uintptr_t low_addr = mapping.system_mapping_info.start_addr;
  const uintptr_t high_addr = mapping.system_mapping_info.end_addr;
  const uintptr_t offset =
      (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);

  for (const uint8_t* sp = stack_copy + offset;
       sp <= stack_copy + stack_len - sizeof(uintptr_t);
       sp += sizeof(uintptr_t)) {
    uintptr_t addr;
    my_memcpy(&addr, sp, sizeof(uintptr_t));
    if (low_addr <= addr && addr <= high_addr)
      return true;
  }
  return false;
}

// Find the mapping which the given memory address falls in.
const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
  const uintptr_t addr = (uintptr_t) address;

  for (size_t i = 0; i < mappings_.size(); ++i) {
    const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
    if (addr >= start && addr - start < mappings_[i]->size)
      return mappings_[i];
  }

  return NULL;
}

// Find the mapping which the given memory address falls in. Uses the
// unadjusted mapping address range from the kernel, rather than the
// biased range.
const MappingInfo* LinuxDumper::FindMappingNoBias(uintptr_t address) const {
  for (size_t i = 0; i < mappings_.size(); ++i) {
    if (address >= mappings_[i]->system_mapping_info.start_addr &&
        address < mappings_[i]->system_mapping_info.end_addr) {
      return mappings_[i];
    }
  }
  return NULL;
}

bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
  static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;

  // Check for ' (deleted)' in |path|.
  // |path| has to be at least as long as "/x (deleted)".
  const size_t path_len = my_strlen(path);
  if (path_len < kDeletedSuffixLen + 2)
    return false;
  if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
                 kDeletedSuffixLen) != 0) {
    return false;
  }

  // Check |path| against the /proc/pid/exe 'symlink'.
  char exe_link[NAME_MAX];
  if (!BuildProcPath(exe_link, pid_, "exe"))
    return false;
  MappingInfo new_mapping = {0};
  if (!SafeReadLink(exe_link, new_mapping.name))
    return false;
  char new_path[PATH_MAX];
  if (!GetMappingAbsolutePath(new_mapping, new_path))
    return false;
  if (my_strcmp(path, new_path) != 0)
    return false;

  // Check to see if someone actually named their executable 'foo (deleted)'.
  struct kernel_stat exe_stat;
  struct kernel_stat new_path_stat;
  if (sys_stat(exe_link, &exe_stat) == 0 &&
      sys_stat(new_path, &new_path_stat) == 0 &&
      exe_stat.st_dev == new_path_stat.st_dev &&
      exe_stat.st_ino == new_path_stat.st_ino) {
    return false;
  }

  my_memcpy(path, exe_link, NAME_MAX);
  return true;
}

}  // namespace google_breakpad