SelfAdjointView.h 12 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFADJOINTMATRIX_H
#define EIGEN_SELFADJOINTMATRIX_H

/** \class SelfAdjointView
  * \ingroup Core_Module
  *
  *
  * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
  *
  * \param MatrixType the type of the dense matrix storing the coefficients
  * \param TriangularPart can be either \c #Lower or \c #Upper
  *
  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
  * and most of the time this is the only way that it is used.
  *
  * \sa class TriangularBase, MatrixBase::selfadjointView()
  */

namespace internal {
template<typename MatrixType, unsigned int UpLo>
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
{
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
  typedef MatrixType ExpressionType;
  typedef typename MatrixType::PlainObject DenseMatrixType;
  enum {
    Mode = UpLo | SelfAdjoint,
    Flags =  MatrixTypeNestedCleaned::Flags & (HereditaryBits)
           & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
    CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
  };
};
}

template <typename Lhs, int LhsMode, bool LhsIsVector,
          typename Rhs, int RhsMode, bool RhsIsVector>
struct SelfadjointProductMatrix;

// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
  : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
{
  public:

    typedef TriangularBase<SelfAdjointView> Base;
    typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
    typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;

    /** \brief The type of coefficients in this matrix */
    typedef typename internal::traits<SelfAdjointView>::Scalar Scalar; 

    typedef typename MatrixType::Index Index;

    enum {
      Mode = internal::traits<SelfAdjointView>::Mode
    };
    typedef typename MatrixType::PlainObject PlainObject;

    inline SelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
    {}

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    inline Index outerStride() const { return m_matrix.outerStride(); }
    inline Index innerStride() const { return m_matrix.innerStride(); }

    /** \sa MatrixBase::coeff()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar coeff(Index row, Index col) const
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.coeff(row, col);
    }

    /** \sa MatrixBase::coeffRef()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.const_cast_derived().coeffRef(row, col);
    }

    /** \internal */
    const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }

    const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
    MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }

    /** Efficient self-adjoint matrix times vector/matrix product */
    template<typename OtherDerived>
    SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
    operator*(const MatrixBase<OtherDerived>& rhs) const
    {
      return SelfadjointProductMatrix
              <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
              (m_matrix, rhs.derived());
    }

    /** Efficient vector/matrix times self-adjoint matrix product */
    template<typename OtherDerived> friend
    SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
    operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
    {
      return SelfadjointProductMatrix
              <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
              (lhs.derived(),rhs.m_matrix);
    }

    /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
      * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
      * \returns a reference to \c *this
      *
      * The vectors \a u and \c v \b must be column vectors, however they can be
      * a adjoint expression without any overhead. Only the meaningful triangular
      * part of the matrix is updated, the rest is left unchanged.
      *
      * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
      */
    template<typename DerivedU, typename DerivedV>
    SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));

    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
      *
      * \returns a reference to \c *this
      *
      * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
      * call this function with u.adjoint().
      *
      * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
      */
    template<typename DerivedU>
    SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));

/////////// Cholesky module ///////////

    const LLT<PlainObject, UpLo> llt() const;
    const LDLT<PlainObject, UpLo> ldlt() const;

/////////// Eigenvalue module ///////////

    /** Real part of #Scalar */
    typedef typename NumTraits<Scalar>::Real RealScalar;
    /** Return type of eigenvalues() */
    typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;

    EigenvaluesReturnType eigenvalues() const;
    RealScalar operatorNorm() const;
    
    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived>
    SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
    {
      enum {
        OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
      };
      m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
      m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
      return *this;
    }
    template<typename OtherMatrixType, unsigned int OtherMode>
    SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
    {
      enum {
        OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
      };
      m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
      m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
      return *this;
    }
    #endif

  protected:
    const MatrixTypeNested m_matrix;
};


// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
// {
//   return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
// }

// selfadjoint to dense matrix

namespace internal {

template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
{
  enum {
    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
  };

  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);

    if(row == col)
      dst.coeffRef(row, col) = real(src.coeff(row, col));
    else if(row < col)
      dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
{
  inline static void run(Derived1 &, const Derived2 &) {}
};

template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
{
  enum {
    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
  };

  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);

    if(row == col)
      dst.coeffRef(row, col) = real(src.coeff(row, col));
    else if(row > col)
      dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
{
  inline static void run(Derived1 &, const Derived2 &) {}
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      for(Index i = 0; i < j; ++i)
      {
        dst.copyCoeff(i, j, src);
        dst.coeffRef(j,i) = conj(dst.coeff(i,j));
      }
      dst.copyCoeff(j, j, src);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
{
  inline static void run(Derived1 &dst, const Derived2 &src)
  {
  typedef typename Derived1::Index Index;
    for(Index i = 0; i < dst.rows(); ++i)
    {
      for(Index j = 0; j < i; ++j)
      {
        dst.copyCoeff(i, j, src);
        dst.coeffRef(j,i) = conj(dst.coeff(i,j));
      }
      dst.copyCoeff(i, i, src);
    }
  }
};

} // end namespace internal

/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/

template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView() const
{
  return derived();
}

template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView()
{
  return derived();
}

#endif // EIGEN_SELFADJOINTMATRIX_H