Reverse.h 8.18 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_REVERSE_H
#define EIGEN_REVERSE_H

/** \class Reverse
  * \ingroup Core_Module
  *
  * \brief Expression of the reverse of a vector or matrix
  *
  * \param MatrixType the type of the object of which we are taking the reverse
  *
  * This class represents an expression of the reverse of a vector.
  * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
  * and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::reverse(), VectorwiseOp::reverse()
  */

namespace internal {

template<typename MatrixType, int Direction>
struct traits<Reverse<MatrixType, Direction> >
 : traits<MatrixType>
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename traits<MatrixType>::StorageKind StorageKind;
  typedef typename traits<MatrixType>::XprKind XprKind;
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,

    // let's enable LinearAccess only with vectorization because of the product overhead
    LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
                 ? LinearAccessBit : 0,

    Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),

    CoeffReadCost = _MatrixTypeNested::CoeffReadCost
  };
};

template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
{
  static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
};

template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
{
  static inline PacketScalar run(const PacketScalar& x) { return x; }
};

} // end namespace internal 

template<typename MatrixType, int Direction> class Reverse
  : public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
{
  public:

    typedef typename internal::dense_xpr_base<Reverse>::type Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
    using Base::IsRowMajor;

    // next line is necessary because otherwise const version of operator()
    // is hidden by non-const version defined in this file
    using Base::operator(); 

  protected:
    enum {
      PacketSize = internal::packet_traits<Scalar>::size,
      IsColMajor = !IsRowMajor,
      ReverseRow = (Direction == Vertical)   || (Direction == BothDirections),
      ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
      OffsetRow  = ReverseRow && IsColMajor ? PacketSize : 1,
      OffsetCol  = ReverseCol && IsRowMajor ? PacketSize : 1,
      ReversePacket = (Direction == BothDirections)
                    || ((Direction == Vertical)   && IsColMajor)
                    || ((Direction == Horizontal) && IsRowMajor)
    };
    typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
  public:

    inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }

    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

    inline Index innerStride() const
    {
      return -m_matrix.innerStride();
    }

    inline Scalar& operator()(Index row, Index col)
    {
      eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
      return coeffRef(row, col);
    }

    inline Scalar& coeffRef(Index row, Index col)
    {
      return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
                                                    ReverseCol ? m_matrix.cols() - col - 1 : col);
    }

    inline CoeffReturnType coeff(Index row, Index col) const
    {
      return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
                            ReverseCol ? m_matrix.cols() - col - 1 : col);
    }

    inline CoeffReturnType coeff(Index index) const
    {
      return m_matrix.coeff(m_matrix.size() - index - 1);
    }

    inline Scalar& coeffRef(Index index)
    {
      return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
    }

    inline Scalar& operator()(Index index)
    {
      eigen_assert(index >= 0 && index < m_matrix.size());
      return coeffRef(index);
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index row, Index col) const
    {
      return reverse_packet::run(m_matrix.template packet<LoadMode>(
                                    ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
                                    ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
    }

    template<int LoadMode>
    inline void writePacket(Index row, Index col, const PacketScalar& x)
    {
      m_matrix.const_cast_derived().template writePacket<LoadMode>(
                                      ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
                                      ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
                                      reverse_packet::run(x));
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index index) const
    {
      return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
    }

    template<int LoadMode>
    inline void writePacket(Index index, const PacketScalar& x)
    {
      m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
    }

  protected:
    const typename MatrixType::Nested m_matrix;
};

/** \returns an expression of the reverse of *this.
  *
  * Example: \include MatrixBase_reverse.cpp
  * Output: \verbinclude MatrixBase_reverse.out
  *
  */
template<typename Derived>
inline typename DenseBase<Derived>::ReverseReturnType
DenseBase<Derived>::reverse()
{
  return derived();
}

/** This is the const version of reverse(). */
template<typename Derived>
inline const typename DenseBase<Derived>::ConstReverseReturnType
DenseBase<Derived>::reverse() const
{
  return derived();
}

/** This is the "in place" version of reverse: it reverses \c *this.
  *
  * In most cases it is probably better to simply use the reversed expression
  * of a matrix. However, when reversing the matrix data itself is really needed,
  * then this "in-place" version is probably the right choice because it provides
  * the following additional features:
  *  - less error prone: doing the same operation with .reverse() requires special care:
  *    \code m = m.reverse().eval(); \endcode
  *  - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
  *  - it allows future optimizations (cache friendliness, etc.)
  *
  * \sa reverse() */
template<typename Derived>
inline void DenseBase<Derived>::reverseInPlace()
{
  derived() = derived().reverse().eval();
}


#endif // EIGEN_REVERSE_H