DynamicSparseMatrix.h 11.4 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
#define EIGEN_DYNAMIC_SPARSEMATRIX_H

/** \class DynamicSparseMatrix
  *
  * \brief A sparse matrix class designed for matrix assembly purpose
  *
  * \param _Scalar the scalar type, i.e. the type of the coefficients
  *
  * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
  * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
  * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
  * otherwise.
  *
  * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
  * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
  * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
  *
  * \see SparseMatrix
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = OuterRandomAccessPattern
  };
};
}

template<typename _Scalar, int _Options, typename _Index>
class DynamicSparseMatrix
  : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
    // FIXME: why are these operator already alvailable ???
    // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
    // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
    typedef MappedSparseMatrix<Scalar,Flags> Map;
    using Base::IsRowMajor;
    using Base::operator=;
    enum {
      Options = _Options
    };

  protected:

    typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_innerSize;
    std::vector<CompressedStorage<Scalar,Index> > m_data;

  public:

    inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
    inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
    inline Index innerSize() const { return m_innerSize; }
    inline Index outerSize() const { return static_cast<Index>(m_data.size()); }
    inline Index innerNonZeros(Index j) const { return m_data[j].size(); }

    std::vector<CompressedStorage<Scalar,Index> >& _data() { return m_data; }
    const std::vector<CompressedStorage<Scalar,Index> >& _data() const { return m_data; }

    /** \returns the coefficient value at given position \a row, \a col
      * This operation involes a log(rho*outer_size) binary search.
      */
    inline Scalar coeff(Index row, Index col) const
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      return m_data[outer].at(inner);
    }

    /** \returns a reference to the coefficient value at given position \a row, \a col
      * This operation involes a log(rho*outer_size) binary search. If the coefficient does not
      * exist yet, then a sorted insertion into a sequential buffer is performed.
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      return m_data[outer].atWithInsertion(inner);
    }

    class InnerIterator;

    void setZero()
    {
      for (Index j=0; j<outerSize(); ++j)
        m_data[j].clear();
    }

    /** \returns the number of non zero coefficients */
    Index nonZeros() const
    {
      Index res = 0;
      for (Index j=0; j<outerSize(); ++j)
        res += static_cast<Index>(m_data[j].size());
      return res;
    }



    void reserve(Index reserveSize = 1000)
    {
      if (outerSize()>0)
      {
        Index reserveSizePerVector = std::max(reserveSize/outerSize(),Index(4));
        for (Index j=0; j<outerSize(); ++j)
        {
          m_data[j].reserve(reserveSizePerVector);
        }
      }
    }

    /** Does nothing: provided for compatibility with SparseMatrix */
    inline void startVec(Index /*outer*/) {}

    /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one of the given inner vector.
      *
      * \sa insert, insertBackByOuterInner */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \sa insertBack */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range");
      eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
                && "wrong sorted insertion");
      m_data[outer].append(0, inner);
      return m_data[outer].value(m_data[outer].size()-1);
    }

    inline Scalar& insert(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index startId = 0;
      Index id = static_cast<Index>(m_data[outer].size()) - 1;
      m_data[outer].resize(id+2,1);

      while ( (id >= startId) && (m_data[outer].index(id) > inner) )
      {
        m_data[outer].index(id+1) = m_data[outer].index(id);
        m_data[outer].value(id+1) = m_data[outer].value(id);
        --id;
      }
      m_data[outer].index(id+1) = inner;
      m_data[outer].value(id+1) = 0;
      return m_data[outer].value(id+1);
    }

    /** Does nothing: provided for compatibility with SparseMatrix */
    inline void finalize() {}

    /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
    void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      for (Index j=0; j<outerSize(); ++j)
        m_data[j].prune(reference,epsilon);
    }

    /** Resize the matrix without preserving the data (the matrix is set to zero)
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      setZero();
      if (Index(m_data.size()) != outerSize)
      {
        m_data.resize(outerSize);
      }
    }

    void resizeAndKeepData(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      const Index innerSize = IsRowMajor ? cols : rows;
      if (m_innerSize>innerSize)
      {
        // remove all coefficients with innerCoord>=innerSize
        // TODO
        //std::cerr << "not implemented yet\n";
        exit(2);
      }
      if (m_data.size() != outerSize)
      {
        m_data.resize(outerSize);
      }
    }

    inline DynamicSparseMatrix()
      : m_innerSize(0), m_data(0)
    {
      eigen_assert(innerSize()==0 && outerSize()==0);
    }

    inline DynamicSparseMatrix(Index rows, Index cols)
      : m_innerSize(0)
    {
      resize(rows, cols);
    }

    template<typename OtherDerived>
    explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_innerSize(0)
    {
    Base::operator=(other.derived());
    }

    inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
      : Base(), m_innerSize(0)
    {
      *this = other.derived();
    }

    inline void swap(DynamicSparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_innerSize, other.m_innerSize);
      //std::swap(m_outerSize, other.m_outerSize);
      m_data.swap(other.m_data);
    }

    inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        resize(other.rows(), other.cols());
        m_data = other.m_data;
      }
      return *this;
    }

    /** Destructor */
    inline ~DynamicSparseMatrix() {}

  public:

    /** \deprecated
      * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
    EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
    {
      setZero();
      reserve(reserveSize);
    }

    /** \deprecated use insert()
      * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
      *  1 - the coefficient does not exist yet
      *  2 - this the coefficient with greater inner coordinate for the given outer coordinate.
      * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
      * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
      *
      * \see fillrand(), coeffRef()
      */
    EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      return insertBack(outer,inner);
    }

    /** \deprecated use insert()
      * Like fill() but with random inner coordinates.
      * Compared to the generic coeffRef(), the unique limitation is that we assume
      * the coefficient does not exist yet.
      */
    EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
    {
      return insert(row,col);
    }

    /** \deprecated use finalize()
      * Does nothing. Provided for compatibility with SparseMatrix. */
    EIGEN_DEPRECATED void endFill() {}
    
#   ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
#     include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
#   endif
};

template<typename Scalar, int _Options, typename _Index>
class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public SparseVector<Scalar,_Options>::InnerIterator
{
    typedef typename SparseVector<Scalar,_Options>::InnerIterator Base;
  public:
    InnerIterator(const DynamicSparseMatrix& mat, Index outer)
      : Base(mat.m_data[outer]), m_outer(outer)
    {}

    inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
    inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }

  protected:
    const Index m_outer;
};

#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H