encoding.cc 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "ortools/sat/encoding.h"

#include <algorithm>
#include <deque>
#include <memory>
#include <queue>

#include "ortools/sat/sat_parameters.pb.h"

namespace operations_research {
namespace sat {

EncodingNode::EncodingNode(Literal l)
    : depth_(0),
      lb_(0),
      ub_(1),
      for_sorting_(l.Variable()),
      child_a_(nullptr),
      child_b_(nullptr),
      literals_(1, l) {}

void EncodingNode::InitializeFullNode(int n, EncodingNode* a, EncodingNode* b,
                                      SatSolver* solver) {
  CHECK(literals_.empty()) << "Already initialized";
  CHECK_GT(n, 0);
  const BooleanVariable first_var_index(solver->NumVariables());
  solver->SetNumVariables(solver->NumVariables() + n);
  for (int i = 0; i < n; ++i) {
    literals_.push_back(Literal(first_var_index + i, true));
    if (i > 0) {
      solver->AddBinaryClause(literal(i - 1), literal(i).Negated());
    }
  }
  lb_ = a->lb_ + b->lb_;
  ub_ = lb_ + n;
  depth_ = 1 + std::max(a->depth_, b->depth_);
  child_a_ = a;
  child_b_ = b;
  for_sorting_ = first_var_index;
}

void EncodingNode::InitializeLazyNode(EncodingNode* a, EncodingNode* b,
                                      SatSolver* solver) {
  CHECK(literals_.empty()) << "Already initialized";
  const BooleanVariable first_var_index(solver->NumVariables());
  solver->SetNumVariables(solver->NumVariables() + 1);
  literals_.emplace_back(first_var_index, true);
  child_a_ = a;
  child_b_ = b;
  ub_ = a->ub_ + b->ub_;
  lb_ = a->lb_ + b->lb_;
  depth_ = 1 + std::max(a->depth_, b->depth_);

  // Merging the node of the same depth in order seems to help a bit.
  for_sorting_ = std::min(a->for_sorting_, b->for_sorting_);
}

bool EncodingNode::IncreaseCurrentUB(SatSolver* solver) {
  CHECK(!literals_.empty());
  if (current_ub() == ub_) return false;
  literals_.emplace_back(BooleanVariable(solver->NumVariables()), true);
  solver->SetNumVariables(solver->NumVariables() + 1);
  solver->AddBinaryClause(literals_.back().Negated(),
                          literals_[literals_.size() - 2]);
  return true;
}

int EncodingNode::Reduce(const SatSolver& solver) {
  int i = 0;
  while (i < literals_.size() &&
         solver.Assignment().LiteralIsTrue(literals_[i])) {
    ++i;
    ++lb_;
  }
  literals_.erase(literals_.begin(), literals_.begin() + i);
  while (!literals_.empty() &&
         solver.Assignment().LiteralIsFalse(literals_.back())) {
    literals_.pop_back();
    ub_ = lb_ + literals_.size();
  }
  return i;
}

void EncodingNode::ApplyUpperBound(int64 upper_bound, SatSolver* solver) {
  if (size() <= upper_bound) return;
  for (int i = upper_bound; i < size(); ++i) {
    solver->AddUnitClause(literal(i).Negated());
  }
  literals_.resize(upper_bound);
  ub_ = lb_ + literals_.size();
}

EncodingNode LazyMerge(EncodingNode* a, EncodingNode* b, SatSolver* solver) {
  EncodingNode n;
  n.InitializeLazyNode(a, b, solver);
  solver->AddBinaryClause(a->literal(0).Negated(), n.literal(0));
  solver->AddBinaryClause(b->literal(0).Negated(), n.literal(0));
  solver->AddTernaryClause(n.literal(0).Negated(), a->literal(0),
                           b->literal(0));
  return n;
}

void IncreaseNodeSize(EncodingNode* node, SatSolver* solver) {
  if (!node->IncreaseCurrentUB(solver)) return;
  std::vector<EncodingNode*> to_process;
  to_process.push_back(node);

  // Only one side of the constraint is mandatory (the one propagating the ones
  // to the top of the encoding tree), and it seems more efficient not to encode
  // the other side.
  //
  // TODO(user): Experiment more.
  const bool complete_encoding = false;

  while (!to_process.empty()) {
    EncodingNode* n = to_process.back();
    EncodingNode* a = n->child_a();
    EncodingNode* b = n->child_b();
    to_process.pop_back();

    // Note that since we were able to increase its size, n must have children.
    // n->GreaterThan(target) is the new literal of n.
    CHECK(a != nullptr);
    CHECK(b != nullptr);
    CHECK_GE(n->size(), 2);
    const int target = n->current_ub() - 1;

    // Add a literal to a if needed.
    // That is, now that the node n can go up to it new current_ub, if we need
    // to increase the current_ub of a.
    if (a->current_ub() != a->ub()) {
      CHECK_GE(a->current_ub() - 1 + b->lb(), target - 1);
      if (a->current_ub() - 1 + b->lb() < target) {
        CHECK(a->IncreaseCurrentUB(solver));
        to_process.push_back(a);
      }
    }

    // Add a literal to b if needed.
    if (b->current_ub() != b->ub()) {
      CHECK_GE(b->current_ub() - 1 + a->lb(), target - 1);
      if (b->current_ub() - 1 + a->lb() < target) {
        CHECK(b->IncreaseCurrentUB(solver));
        to_process.push_back(b);
      }
    }

    // Wire the new literal of n correctly with its two children.
    for (int ia = a->lb(); ia < a->current_ub(); ++ia) {
      const int ib = target - ia;
      if (complete_encoding && ib >= b->lb() && ib < b->current_ub()) {
        // if x <= ia and y <= ib then x + y <= ia + ib.
        solver->AddTernaryClause(n->GreaterThan(target).Negated(),
                                 a->GreaterThan(ia), b->GreaterThan(ib));
      }
      if (complete_encoding && ib == b->ub()) {
        solver->AddBinaryClause(n->GreaterThan(target).Negated(),
                                a->GreaterThan(ia));
      }

      if (ib - 1 == b->lb() - 1) {
        solver->AddBinaryClause(n->GreaterThan(target),
                                a->GreaterThan(ia).Negated());
      }
      if ((ib - 1) >= b->lb() && (ib - 1) < b->current_ub()) {
        // if x > ia and y > ib - 1 then x + y > ia + ib.
        solver->AddTernaryClause(n->GreaterThan(target),
                                 a->GreaterThan(ia).Negated(),
                                 b->GreaterThan(ib - 1).Negated());
      }
    }

    // Case ia = a->lb() - 1; a->GreaterThan(ia) always true.
    {
      const int ib = target - (a->lb() - 1);
      if ((ib - 1) == b->lb() - 1) {
        solver->AddUnitClause(n->GreaterThan(target));
      }
      if ((ib - 1) >= b->lb() && (ib - 1) < b->current_ub()) {
        solver->AddBinaryClause(n->GreaterThan(target),
                                b->GreaterThan(ib - 1).Negated());
      }
    }

    // case ia == a->ub; a->GreaterThan(ia) always false.
    {
      const int ib = target - a->ub();
      if (complete_encoding && ib >= b->lb() && ib < b->current_ub()) {
        solver->AddBinaryClause(n->GreaterThan(target).Negated(),
                                b->GreaterThan(ib));
      }
      if (ib == b->ub()) {
        solver->AddUnitClause(n->GreaterThan(target).Negated());
      }
    }
  }
}

EncodingNode FullMerge(Coefficient upper_bound, EncodingNode* a,
                       EncodingNode* b, SatSolver* solver) {
  EncodingNode n;
  const int size =
      std::min(Coefficient(a->size() + b->size()), upper_bound).value();
  n.InitializeFullNode(size, a, b, solver);
  for (int ia = 0; ia < a->size(); ++ia) {
    if (ia + b->size() < size) {
      solver->AddBinaryClause(n.literal(ia + b->size()).Negated(),
                              a->literal(ia));
    }
    if (ia < size) {
      solver->AddBinaryClause(n.literal(ia), a->literal(ia).Negated());
    } else {
      // Fix the variable to false because of the given upper_bound.
      solver->AddUnitClause(a->literal(ia).Negated());
    }
  }
  for (int ib = 0; ib < b->size(); ++ib) {
    if (ib + a->size() < size) {
      solver->AddBinaryClause(n.literal(ib + a->size()).Negated(),
                              b->literal(ib));
    }
    if (ib < size) {
      solver->AddBinaryClause(n.literal(ib), b->literal(ib).Negated());
    } else {
      // Fix the variable to false because of the given upper_bound.
      solver->AddUnitClause(b->literal(ib).Negated());
    }
  }
  for (int ia = 0; ia < a->size(); ++ia) {
    for (int ib = 0; ib < b->size(); ++ib) {
      if (ia + ib < size) {
        // if x <= ia and y <= ib, then x + y <= ia + ib.
        solver->AddTernaryClause(n.literal(ia + ib).Negated(), a->literal(ia),
                                 b->literal(ib));
      }
      if (ia + ib + 1 < size) {
        // if x > ia and y > ib, then x + y > ia + ib + 1.
        solver->AddTernaryClause(n.literal(ia + ib + 1),
                                 a->literal(ia).Negated(),
                                 b->literal(ib).Negated());
      } else {
        solver->AddBinaryClause(a->literal(ia).Negated(),
                                b->literal(ib).Negated());
      }
    }
  }
  return n;
}

EncodingNode* MergeAllNodesWithDeque(Coefficient upper_bound,
                                     const std::vector<EncodingNode*>& nodes,
                                     SatSolver* solver,
                                     std::deque<EncodingNode>* repository) {
  std::deque<EncodingNode*> dq(nodes.begin(), nodes.end());
  while (dq.size() > 1) {
    EncodingNode* a = dq.front();
    dq.pop_front();
    EncodingNode* b = dq.front();
    dq.pop_front();
    repository->push_back(FullMerge(upper_bound, a, b, solver));
    dq.push_back(&repository->back());
  }
  return dq.front();
}

namespace {
struct SortEncodingNodePointers {
  bool operator()(EncodingNode* a, EncodingNode* b) const { return *a < *b; }
};
}  // namespace

EncodingNode* LazyMergeAllNodeWithPQ(const std::vector<EncodingNode*>& nodes,
                                     SatSolver* solver,
                                     std::deque<EncodingNode>* repository) {
  std::priority_queue<EncodingNode*, std::vector<EncodingNode*>,
                      SortEncodingNodePointers>
      pq(nodes.begin(), nodes.end());
  while (pq.size() > 1) {
    EncodingNode* a = pq.top();
    pq.pop();
    EncodingNode* b = pq.top();
    pq.pop();
    repository->push_back(LazyMerge(a, b, solver));
    pq.push(&repository->back());
  }
  return pq.top();
}

std::vector<EncodingNode*> CreateInitialEncodingNodes(
    const std::vector<Literal>& literals,
    const std::vector<Coefficient>& coeffs, Coefficient* offset,
    std::deque<EncodingNode>* repository) {
  CHECK_EQ(literals.size(), coeffs.size());
  *offset = 0;
  std::vector<EncodingNode*> nodes;
  for (int i = 0; i < literals.size(); ++i) {
    // We want to maximize the cost when this literal is true.
    if (coeffs[i] > 0) {
      repository->emplace_back(literals[i]);
      nodes.push_back(&repository->back());
      nodes.back()->set_weight(coeffs[i]);
    } else {
      repository->emplace_back(literals[i].Negated());
      nodes.push_back(&repository->back());
      nodes.back()->set_weight(-coeffs[i]);

      // Note that this increase the offset since the coeff is negative.
      *offset -= coeffs[i];
    }
  }
  return nodes;
}

std::vector<EncodingNode*> CreateInitialEncodingNodes(
    const LinearObjective& objective_proto, Coefficient* offset,
    std::deque<EncodingNode>* repository) {
  *offset = 0;
  std::vector<EncodingNode*> nodes;
  for (int i = 0; i < objective_proto.literals_size(); ++i) {
    const Literal literal(objective_proto.literals(i));

    // We want to maximize the cost when this literal is true.
    if (objective_proto.coefficients(i) > 0) {
      repository->emplace_back(literal);
      nodes.push_back(&repository->back());
      nodes.back()->set_weight(Coefficient(objective_proto.coefficients(i)));
    } else {
      repository->emplace_back(literal.Negated());
      nodes.push_back(&repository->back());
      nodes.back()->set_weight(Coefficient(-objective_proto.coefficients(i)));

      // Note that this increase the offset since the coeff is negative.
      *offset -= objective_proto.coefficients(i);
    }
  }
  return nodes;
}

namespace {

bool EncodingNodeByWeight(const EncodingNode* a, const EncodingNode* b) {
  return a->weight() < b->weight();
}

bool EncodingNodeByDepth(const EncodingNode* a, const EncodingNode* b) {
  return a->depth() < b->depth();
}

bool EmptyEncodingNode(const EncodingNode* a) { return a->size() == 0; }

}  // namespace

std::vector<Literal> ReduceNodesAndExtractAssumptions(
    Coefficient upper_bound, Coefficient stratified_lower_bound,
    Coefficient* lower_bound, std::vector<EncodingNode*>* nodes,
    SatSolver* solver) {
  // Remove the left-most variables fixed to one from each node.
  // Also update the lower_bound. Note that Reduce() needs the solver to be
  // at the root node in order to work.
  solver->Backtrack(0);
  for (EncodingNode* n : *nodes) {
    *lower_bound += n->Reduce(*solver) * n->weight();
  }

  // Fix the nodes right-most variables that are above the gap.
  if (upper_bound != kCoefficientMax) {
    const Coefficient gap = upper_bound - *lower_bound;
    if (gap <= 0) return {};
    for (EncodingNode* n : *nodes) {
      n->ApplyUpperBound((gap / n->weight()).value(), solver);
    }
  }

  // Remove the empty nodes.
  nodes->erase(std::remove_if(nodes->begin(), nodes->end(), EmptyEncodingNode),
               nodes->end());

  // Sort the nodes.
  switch (solver->parameters().max_sat_assumption_order()) {
    case SatParameters::DEFAULT_ASSUMPTION_ORDER:
      break;
    case SatParameters::ORDER_ASSUMPTION_BY_DEPTH:
      std::sort(nodes->begin(), nodes->end(), EncodingNodeByDepth);
      break;
    case SatParameters::ORDER_ASSUMPTION_BY_WEIGHT:
      std::sort(nodes->begin(), nodes->end(), EncodingNodeByWeight);
      break;
  }
  if (solver->parameters().max_sat_reverse_assumption_order()) {
    // TODO(user): with DEFAULT_ASSUMPTION_ORDER, this will lead to a somewhat
    // weird behavior, since we will reverse the nodes at each iteration...
    std::reverse(nodes->begin(), nodes->end());
  }

  // Extract the assumptions from the nodes.
  std::vector<Literal> assumptions;
  for (EncodingNode* n : *nodes) {
    if (n->weight() >= stratified_lower_bound) {
      assumptions.push_back(n->literal(0).Negated());
    }
  }
  return assumptions;
}

Coefficient ComputeCoreMinWeight(const std::vector<EncodingNode*>& nodes,
                                 const std::vector<Literal>& core) {
  Coefficient min_weight = kCoefficientMax;
  int index = 0;
  for (int i = 0; i < core.size(); ++i) {
    for (;
         index < nodes.size() && nodes[index]->literal(0).Negated() != core[i];
         ++index) {
    }
    CHECK_LT(index, nodes.size());
    min_weight = std::min(min_weight, nodes[index]->weight());
  }
  return min_weight;
}

Coefficient MaxNodeWeightSmallerThan(const std::vector<EncodingNode*>& nodes,
                                     Coefficient upper_bound) {
  Coefficient result(0);
  for (EncodingNode* n : nodes) {
    CHECK_GT(n->weight(), 0);
    if (n->weight() < upper_bound) {
      result = std::max(result, n->weight());
    }
  }
  return result;
}

void ProcessCore(const std::vector<Literal>& core, Coefficient min_weight,
                 std::deque<EncodingNode>* repository,
                 std::vector<EncodingNode*>* nodes, SatSolver* solver) {
  // Backtrack to be able to add new constraints.
  solver->Backtrack(0);

  if (core.size() == 1) {
    // The core will be reduced at the beginning of the next loop.
    // Find the associated node, and call IncreaseNodeSize() on it.
    CHECK(solver->Assignment().LiteralIsFalse(core[0]));
    for (EncodingNode* n : *nodes) {
      if (n->literal(0).Negated() == core[0]) {
        IncreaseNodeSize(n, solver);
        return;
      }
    }
    LOG(FATAL) << "Node with literal " << core[0] << " not found!";
  }

  // Remove from nodes the EncodingNode in the core, merge them, and add the
  // resulting EncodingNode at the back.
  int index = 0;
  int new_node_index = 0;
  std::vector<EncodingNode*> to_merge;
  for (int i = 0; i < core.size(); ++i) {
    // Since the nodes appear in order in the core, we can find the
    // relevant "objective" variable efficiently with a simple linear scan
    // in the nodes vector (done with index).
    for (; (*nodes)[index]->literal(0).Negated() != core[i]; ++index) {
      CHECK_LT(index, nodes->size());
      (*nodes)[new_node_index] = (*nodes)[index];
      ++new_node_index;
    }
    CHECK_LT(index, nodes->size());
    to_merge.push_back((*nodes)[index]);

    // Special case if the weight > min_weight. we keep it, but reduce its
    // cost. This is the same "trick" as in WPM1 used to deal with weight.
    // We basically split a clause with a larger weight in two identical
    // clauses, one with weight min_weight that will be merged and one with
    // the remaining weight.
    if ((*nodes)[index]->weight() > min_weight) {
      (*nodes)[index]->set_weight((*nodes)[index]->weight() - min_weight);
      (*nodes)[new_node_index] = (*nodes)[index];
      ++new_node_index;
    }
    ++index;
  }
  for (; index < nodes->size(); ++index) {
    (*nodes)[new_node_index] = (*nodes)[index];
    ++new_node_index;
  }
  nodes->resize(new_node_index);
  nodes->push_back(LazyMergeAllNodeWithPQ(to_merge, solver, repository));
  IncreaseNodeSize(nodes->back(), solver);
  nodes->back()->set_weight(min_weight);
  CHECK(solver->AddUnitClause(nodes->back()->literal(0)));
}

}  // namespace sat
}  // namespace operations_research