circuit.cc 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "ortools/sat/circuit.h"

#include <algorithm>

#include "absl/container/flat_hash_map.h"
#include "ortools/base/map_util.h"
#include "ortools/sat/sat_solver.h"

namespace operations_research {
namespace sat {

CircuitPropagator::CircuitPropagator(const int num_nodes,
                                     const std::vector<int>& tails,
                                     const std::vector<int>& heads,
                                     const std::vector<Literal>& literals,
                                     Options options, Model* model)
    : num_nodes_(num_nodes),
      options_(options),
      trail_(model->GetOrCreate<Trail>()),
      assignment_(trail_->Assignment()) {
  CHECK(!tails.empty()) << "Empty constraint, shouldn't be constructed!";
  next_.resize(num_nodes_, -1);
  prev_.resize(num_nodes_, -1);
  next_literal_.resize(num_nodes_);
  must_be_in_cycle_.resize(num_nodes_);
  absl::flat_hash_map<LiteralIndex, int> literal_to_watch_index;

  const int num_arcs = tails.size();
  graph_.reserve(num_arcs);
  self_arcs_.resize(num_nodes_,
                    model->GetOrCreate<IntegerEncoder>()->GetFalseLiteral());
  for (int arc = 0; arc < num_arcs; ++arc) {
    const int head = heads[arc];
    const int tail = tails[arc];
    const Literal literal = literals[arc];
    if (assignment_.LiteralIsFalse(literal)) continue;

    if (tail == head) {
      self_arcs_[tail] = literal;
    } else {
      graph_[{tail, head}] = literal;
    }

    if (assignment_.LiteralIsTrue(literal)) {
      CHECK_EQ(next_[tail], -1)
          << "Trivially UNSAT or duplicate arcs while adding " << tail << " -> "
          << head;
      CHECK_EQ(prev_[head], -1)
          << "Trivially UNSAT or duplicate arcs while adding " << tail << " -> "
          << head;
      AddArc(tail, head, kNoLiteralIndex);
      continue;
    }

    // Tricky: For self-arc, we watch instead when the arc become false.
    const Literal watched_literal = tail == head ? literal.Negated() : literal;
    int watch_index = gtl::FindWithDefault(literal_to_watch_index,
                                           watched_literal.Index(), -1);
    if (watch_index == -1) {
      watch_index = watch_index_to_literal_.size();
      literal_to_watch_index[watched_literal.Index()] = watch_index;
      watch_index_to_literal_.push_back(watched_literal);
      watch_index_to_arcs_.push_back(std::vector<Arc>());
    }
    watch_index_to_arcs_[watch_index].push_back({tail, head});
  }

  for (int node = 0; node < num_nodes_; ++node) {
    if (assignment_.LiteralIsFalse(self_arcs_[node])) {
      // For the multiple_subcircuit_through_zero case, must_be_in_cycle_ will
      // be const and only contains zero.
      if (node == 0 || !options_.multiple_subcircuit_through_zero) {
        must_be_in_cycle_[rev_must_be_in_cycle_size_++] = node;
      }
    }
  }
}

void CircuitPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
  const int id = watcher->Register(this);
  for (int w = 0; w < watch_index_to_literal_.size(); ++w) {
    watcher->WatchLiteral(watch_index_to_literal_[w], id, w);
  }
  watcher->RegisterReversibleClass(id, this);
  watcher->RegisterReversibleInt(id, &propagation_trail_index_);
  watcher->RegisterReversibleInt(id, &rev_must_be_in_cycle_size_);

  // This is needed in case a Literal is used for more than one arc, we may
  // propagate it to false/true here, and it might trigger more propagation.
  //
  // TODO(user): come up with a test that fail when this is not here.
  watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
}

void CircuitPropagator::SetLevel(int level) {
  if (level == level_ends_.size()) return;
  if (level > level_ends_.size()) {
    while (level > level_ends_.size()) {
      level_ends_.push_back(added_arcs_.size());
    }
    return;
  }

  // Backtrack.
  for (int i = level_ends_[level]; i < added_arcs_.size(); ++i) {
    const Arc arc = added_arcs_[i];
    next_[arc.tail] = -1;
    prev_[arc.head] = -1;
  }
  added_arcs_.resize(level_ends_[level]);
  level_ends_.resize(level);
}

void CircuitPropagator::FillReasonForPath(int start_node,
                                          std::vector<Literal>* reason) const {
  CHECK_NE(start_node, -1);
  reason->clear();
  int node = start_node;
  while (next_[node] != -1) {
    if (next_literal_[node] != kNoLiteralIndex) {
      reason->push_back(Literal(next_literal_[node]).Negated());
    }
    node = next_[node];
    if (node == start_node) break;
  }
}

// If multiple_subcircuit_through_zero is true, we never fill next_[0] and
// prev_[0].
void CircuitPropagator::AddArc(int tail, int head, LiteralIndex literal_index) {
  if (tail != 0 || !options_.multiple_subcircuit_through_zero) {
    next_[tail] = head;
    next_literal_[tail] = literal_index;
  }
  if (head != 0 || !options_.multiple_subcircuit_through_zero) {
    prev_[head] = tail;
  }
}

bool CircuitPropagator::IncrementalPropagate(
    const std::vector<int>& watch_indices) {
  for (const int w : watch_indices) {
    const Literal literal = watch_index_to_literal_[w];
    for (const Arc arc : watch_index_to_arcs_[w]) {
      // Special case for self-arc.
      if (arc.tail == arc.head) {
        must_be_in_cycle_[rev_must_be_in_cycle_size_++] = arc.tail;
        continue;
      }

      // Get rid of the trivial conflicts: At most one incoming and one outgoing
      // arc for each nodes.
      if (next_[arc.tail] != -1) {
        std::vector<Literal>* conflict = trail_->MutableConflict();
        if (next_literal_[arc.tail] != kNoLiteralIndex) {
          *conflict = {Literal(next_literal_[arc.tail]).Negated(),
                       literal.Negated()};
        } else {
          *conflict = {literal.Negated()};
        }
        return false;
      }
      if (prev_[arc.head] != -1) {
        std::vector<Literal>* conflict = trail_->MutableConflict();
        if (next_literal_[prev_[arc.head]] != kNoLiteralIndex) {
          *conflict = {Literal(next_literal_[prev_[arc.head]]).Negated(),
                       literal.Negated()};
        } else {
          *conflict = {literal.Negated()};
        }
        return false;
      }

      // Add the arc.
      AddArc(arc.tail, arc.head, literal.Index());
      added_arcs_.push_back(arc);
    }
  }
  return Propagate();
}

// This function assumes that next_, prev_, next_literal_ and must_be_in_cycle_
// are all up to date.
bool CircuitPropagator::Propagate() {
  processed_.assign(num_nodes_, false);
  for (int n = 0; n < num_nodes_; ++n) {
    if (processed_[n]) continue;
    if (next_[n] == n) continue;
    if (next_[n] == -1 && prev_[n] == -1) continue;

    // TODO(user): both this and the loop on must_be_in_cycle_ might take some
    // time on large graph. Optimize if this become an issue.
    in_current_path_.assign(num_nodes_, false);

    // Find the start and end of the path containing node n. If this is a
    // circuit, we will have start_node == end_node.
    int start_node = n;
    int end_node = n;
    in_current_path_[n] = true;
    processed_[n] = true;
    while (next_[end_node] != -1) {
      end_node = next_[end_node];
      in_current_path_[end_node] = true;
      processed_[end_node] = true;
      if (end_node == n) break;
    }
    while (prev_[start_node] != -1) {
      start_node = prev_[start_node];
      in_current_path_[start_node] = true;
      processed_[start_node] = true;
      if (start_node == n) break;
    }

    // Check if we miss any node that must be in the circuit. Note that the ones
    // for which self_arcs_[i] is kFalseLiteralIndex are first. This is good as
    // it will produce shorter reason. Otherwise we prefer the first that was
    // assigned in the trail.
    bool miss_some_nodes = false;
    LiteralIndex extra_reason = kFalseLiteralIndex;
    for (int i = 0; i < rev_must_be_in_cycle_size_; ++i) {
      const int node = must_be_in_cycle_[i];
      if (!in_current_path_[node]) {
        miss_some_nodes = true;
        extra_reason = self_arcs_[node].Index();
        break;
      }
    }

    if (miss_some_nodes) {
      // A circuit that miss a mandatory node is a conflict.
      if (start_node == end_node) {
        FillReasonForPath(start_node, trail_->MutableConflict());
        if (extra_reason != kFalseLiteralIndex) {
          trail_->MutableConflict()->push_back(Literal(extra_reason));
        }
        return false;
      }

      // We have an unclosed path. Propagate the fact that it cannot
      // be closed into a cycle, i.e. not(end_node -> start_node).
      if (start_node != end_node) {
        const auto it = graph_.find({end_node, start_node});
        if (it == graph_.end()) continue;
        const Literal literal = it->second;
        if (assignment_.LiteralIsFalse(literal)) continue;

        std::vector<Literal>* reason = trail_->GetEmptyVectorToStoreReason();
        FillReasonForPath(start_node, reason);
        if (extra_reason != kFalseLiteralIndex) {
          reason->push_back(Literal(extra_reason));
        }
        const bool ok = trail_->EnqueueWithStoredReason(literal.Negated());
        if (!ok) return false;
        continue;
      }
    }

    // If we have a cycle, we can propagate all the other nodes to point to
    // themselves. Otherwise there is nothing else to do.
    if (start_node != end_node) continue;
    if (options_.multiple_subcircuit_through_zero) continue;
    BooleanVariable variable_with_same_reason = kNoBooleanVariable;
    for (int node = 0; node < num_nodes_; ++node) {
      if (in_current_path_[node]) continue;
      if (assignment_.LiteralIsTrue(self_arcs_[node])) continue;

      // This shouldn't happen because ExactlyOnePerRowAndPerColumn() should
      // have executed first and propagated self_arcs_[node] to false.
      CHECK_EQ(next_[node], -1);

      // We should have detected that above (miss_some_nodes == true). But we
      // still need this for corner cases where the same literal is used for
      // many arcs, and we just propagated it here.
      if (assignment_.LiteralIsFalse(self_arcs_[node])) {
        FillReasonForPath(start_node, trail_->MutableConflict());
        trail_->MutableConflict()->push_back(self_arcs_[node]);
        return false;
      }

      // Propagate.
      const Literal literal(self_arcs_[node]);
      if (variable_with_same_reason == kNoBooleanVariable) {
        variable_with_same_reason = literal.Variable();
        FillReasonForPath(start_node, trail_->GetEmptyVectorToStoreReason());
        const bool ok = trail_->EnqueueWithStoredReason(literal);
        if (!ok) return false;
      } else {
        trail_->EnqueueWithSameReasonAs(literal, variable_with_same_reason);
      }
    }
  }
  return true;
}

CircuitCoveringPropagator::CircuitCoveringPropagator(
    std::vector<std::vector<Literal>> graph,
    const std::vector<int>& distinguished_nodes, Model* model)
    : graph_(std::move(graph)),
      num_nodes_(graph_.size()),
      trail_(model->GetOrCreate<Trail>()) {
  node_is_distinguished_.resize(num_nodes_, false);
  for (const int node : distinguished_nodes) {
    node_is_distinguished_[node] = true;
  }
}

void CircuitCoveringPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
  const int watcher_id = watcher->Register(this);

  // Fill fixed_arcs_ with arcs that are initially fixed to true,
  // assign arcs to watch indices.
  for (int node1 = 0; node1 < num_nodes_; node1++) {
    for (int node2 = 0; node2 < num_nodes_; node2++) {
      const Literal l = graph_[node1][node2];
      if (trail_->Assignment().LiteralIsFalse(l)) continue;
      if (trail_->Assignment().LiteralIsTrue(l)) {
        fixed_arcs_.emplace_back(node1, node2);
      } else {
        watcher->WatchLiteral(l, watcher_id, watch_index_to_arc_.size());
        watch_index_to_arc_.emplace_back(node1, node2);
      }
    }
  }
  watcher->RegisterReversibleClass(watcher_id, this);
}

void CircuitCoveringPropagator::SetLevel(int level) {
  if (level == level_ends_.size()) return;
  if (level > level_ends_.size()) {
    while (level > level_ends_.size()) {
      level_ends_.push_back(fixed_arcs_.size());
    }
  } else {
    // Backtrack.
    fixed_arcs_.resize(level_ends_[level]);
    level_ends_.resize(level);
  }
}

bool CircuitCoveringPropagator::IncrementalPropagate(
    const std::vector<int>& watch_indices) {
  for (const int w : watch_indices) {
    const auto& arc = watch_index_to_arc_[w];
    fixed_arcs_.push_back(arc);
  }
  return Propagate();
}

void CircuitCoveringPropagator::FillFixedPathInReason(
    int start, int end, std::vector<Literal>* reason) {
  reason->clear();
  int current = start;
  do {
    DCHECK_NE(next_[current], -1);
    DCHECK(trail_->Assignment().LiteralIsTrue(graph_[current][next_[current]]));
    reason->push_back(graph_[current][next_[current]].Negated());
    current = next_[current];
  } while (current != end);
}

bool CircuitCoveringPropagator::Propagate() {
  // Gather next_ and prev_ from fixed arcs.
  next_.assign(num_nodes_, -1);
  prev_.assign(num_nodes_, -1);
  for (const auto& arc : fixed_arcs_) {
    // Two arcs go out of arc.first, forbidden.
    if (next_[arc.first] != -1) {
      *trail_->MutableConflict() = {
          graph_[arc.first][next_[arc.first]].Negated(),
          graph_[arc.first][arc.second].Negated()};
      return false;
    }
    next_[arc.first] = arc.second;
    // Two arcs come into arc.second, forbidden.
    if (prev_[arc.second] != -1) {
      *trail_->MutableConflict() = {
          graph_[prev_[arc.second]][arc.second].Negated(),
          graph_[arc.first][arc.second].Negated()};
      return false;
    }
    prev_[arc.second] = arc.first;
  }

  // For every node, find partial path/circuit in which the node is.
  // Use visited_ to visit each path/circuit only once.
  visited_.assign(num_nodes_, false);
  for (int node = 0; node < num_nodes_; node++) {
    // Skip if already visited, isolated or loop.
    if (visited_[node]) continue;
    if (prev_[node] == -1 && next_[node] == -1) continue;
    if (prev_[node] == node) continue;

    // Find start of path/circuit.
    int start = node;
    for (int current = prev_[node]; current != -1 && current != node;
         current = prev_[current]) {
      start = current;
    }

    // Find distinguished node of path. Fail if there are several,
    // fail if this is a non loop circuit and there are none.
    int distinguished = node_is_distinguished_[start] ? start : -1;
    int current = next_[start];
    int end = start;
    visited_[start] = true;
    while (current != -1 && current != start) {
      if (node_is_distinguished_[current]) {
        if (distinguished != -1) {
          FillFixedPathInReason(distinguished, current,
                                trail_->MutableConflict());
          return false;
        }
        distinguished = current;
      }
      visited_[current] = true;
      end = current;
      current = next_[current];
    }

    // Circuit with no distinguished nodes, forbidden.
    if (start == current && distinguished == -1) {
      FillFixedPathInReason(start, start, trail_->MutableConflict());
      return false;
    }

    // Path with no distinguished node: forbid to close it.
    if (current == -1 && distinguished == -1 &&
        !trail_->Assignment().LiteralIsFalse(graph_[end][start])) {
      auto* reason = trail_->GetEmptyVectorToStoreReason();
      FillFixedPathInReason(start, end, reason);
      const bool ok =
          trail_->EnqueueWithStoredReason(graph_[end][start].Negated());
      if (!ok) return false;
    }
  }
  return true;
}

std::function<void(Model*)> ExactlyOnePerRowAndPerColumn(
    const std::vector<std::vector<Literal>>& graph) {
  return [=](Model* model) {
    const int n = graph.size();
    std::vector<Literal> exactly_one_constraint;
    exactly_one_constraint.reserve(n);
    for (const bool transpose : {false, true}) {
      for (int i = 0; i < n; ++i) {
        exactly_one_constraint.clear();
        for (int j = 0; j < n; ++j) {
          exactly_one_constraint.push_back(transpose ? graph[j][i]
                                                     : graph[i][j]);
        }
        model->Add(ExactlyOneConstraint(exactly_one_constraint));
      }
    }
  };
}

int ReindexArcs(std::vector<int>* tails, std::vector<int>* heads,
                std::vector<Literal>* literals) {
  const int num_arcs = tails->size();
  if (num_arcs == 0) return 0;

  // Put all nodes in a set.
  std::set<int> nodes;
  for (int arc = 0; arc < num_arcs; ++arc) {
    nodes.insert((*tails)[arc]);
    nodes.insert((*heads)[arc]);
  }

  // Compute the new indices while keeping a stable order.
  int new_index = 0;
  std::vector<int> mapping(*--nodes.end() + 1);
  for (const int node : nodes) {
    mapping[node] = new_index++;
  }

  // Remap the arcs.
  for (int arc = 0; arc < num_arcs; ++arc) {
    (*tails)[arc] = mapping[(*tails)[arc]];
    (*heads)[arc] = mapping[(*heads)[arc]];
  }
  return nodes.size();
}

std::function<void(Model*)> SubcircuitConstraint(
    int num_nodes, const std::vector<int>& tails, const std::vector<int>& heads,
    const std::vector<Literal>& literals,
    bool multiple_subcircuit_through_zero) {
  return [=](Model* model) {
    const int num_arcs = tails.size();
    CHECK_GT(num_arcs, 0);
    CHECK_EQ(heads.size(), num_arcs);
    CHECK_EQ(literals.size(), num_arcs);

    // If a node has no outgoing or no incoming arc, the model will be unsat
    // as soon as we add the corresponding ExactlyOneConstraint().
    auto sat_solver = model->GetOrCreate<SatSolver>();

    std::vector<std::vector<Literal>> exactly_one_incoming(num_nodes);
    std::vector<std::vector<Literal>> exactly_one_outgoing(num_nodes);
    for (int arc = 0; arc < num_arcs; arc++) {
      const int tail = tails[arc];
      const int head = heads[arc];
      exactly_one_outgoing[tail].push_back(literals[arc]);
      exactly_one_incoming[head].push_back(literals[arc]);
    }
    for (int i = 0; i < exactly_one_incoming.size(); ++i) {
      if (i == 0 && multiple_subcircuit_through_zero) continue;
      model->Add(ExactlyOneConstraint(exactly_one_incoming[i]));
      if (sat_solver->IsModelUnsat()) return;
    }
    for (int i = 0; i < exactly_one_outgoing.size(); ++i) {
      if (i == 0 && multiple_subcircuit_through_zero) continue;
      model->Add(ExactlyOneConstraint(exactly_one_outgoing[i]));
      if (sat_solver->IsModelUnsat()) return;
    }

    CircuitPropagator::Options options;
    options.multiple_subcircuit_through_zero = multiple_subcircuit_through_zero;
    CircuitPropagator* constraint = new CircuitPropagator(
        num_nodes, tails, heads, literals, options, model);
    constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
    model->TakeOwnership(constraint);
  };
}

std::function<void(Model*)> CircuitCovering(
    const std::vector<std::vector<Literal>>& graph,
    const std::vector<int>& distinguished_nodes) {
  return [=](Model* model) {
    CircuitCoveringPropagator* constraint =
        new CircuitCoveringPropagator(graph, distinguished_nodes, model);
    constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
    model->TakeOwnership(constraint);
  };
}

}  // namespace sat
}  // namespace operations_research