rank_one_update.h 8.56 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_
#define OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_

#include "ortools/base/logging.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse.h"

namespace operations_research {
namespace glop {

// This class holds a matrix of the form T = I + u.Tr(v) where I is the
// identity matrix and u and v are two column vectors of the same size as I. It
// allows for efficient left and right solves with T. When T is non-singular,
// it is easy to show that T^{-1} = I - 1 / mu * u.Tr(v) where
// mu = 1.0 + Tr(v).u
//
// Note that when v is a unit vector, T is a regular Eta matrix and when u
// is a unit vector, T is a row-wise Eta matrix.
//
// This is based on section 3.1 of:
// Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised
// simplex method", 28 january 2013, Technical Report ERGO-13-0001
class RankOneUpdateElementaryMatrix {
 public:
  // Rather than copying the vectors u and v, RankOneUpdateElementaryMatrix
  // takes two columns of a provided CompactSparseMatrix which is used for
  // storage. This has a couple of advantages, especially in the context of the
  // RankOneUpdateFactorization below:
  // - It uses less overall memory (and avoid allocation overhead).
  // - It has a better cache behavior for the RankOneUpdateFactorization solves.
  RankOneUpdateElementaryMatrix(const CompactSparseMatrix* storage,
                                ColIndex u_index, ColIndex v_index,
                                Fractional u_dot_v)
      : storage_(storage),
        u_index_(u_index),
        v_index_(v_index),
        mu_(1.0 + u_dot_v) {}

  // Returns whether or not this matrix is singular.
  // Note that the RightSolve() and LeftSolve() function will fail if this is
  // the case.
  bool IsSingular() const { return mu_ == 0.0; }

  // Solves T.x = rhs with rhs initialy in x (a column vector).
  // The non-zeros version keeps track of the new non-zeros.
  void RightSolve(DenseColumn* x) const {
    DCHECK(!IsSingular());
    const Fractional multiplier =
        -storage_->ColumnScalarProduct(v_index_, Transpose(*x)) / mu_;
    storage_->ColumnAddMultipleToDenseColumn(u_index_, multiplier, x);
  }
  void RightSolveWithNonZeros(ScatteredColumn* x) const {
    DCHECK(!IsSingular());
    const Fractional multiplier =
        -storage_->ColumnScalarProduct(v_index_, Transpose(x->values)) / mu_;
    if (multiplier != 0.0) {
      storage_->ColumnAddMultipleToSparseScatteredColumn(u_index_, multiplier,
                                                         x);
    }
  }

  // Solves y.T = rhs with rhs initialy in y (a row vector).
  // The non-zeros version keeps track of the new non-zeros.
  void LeftSolve(DenseRow* y) const {
    DCHECK(!IsSingular());
    const Fractional multiplier =
        -storage_->ColumnScalarProduct(u_index_, *y) / mu_;
    storage_->ColumnAddMultipleToDenseColumn(v_index_, multiplier,
                                             reinterpret_cast<DenseColumn*>(y));
  }
  void LeftSolveWithNonZeros(ScatteredRow* y) const {
    DCHECK(!IsSingular());
    const Fractional multiplier =
        -storage_->ColumnScalarProduct(u_index_, y->values) / mu_;
    if (multiplier != 0.0) {
      storage_->ColumnAddMultipleToSparseScatteredColumn(
          v_index_, multiplier, reinterpret_cast<ScatteredColumn*>(y));
    }
  }

  // Computes T.x for a given column vector.
  void RightMultiply(DenseColumn* x) const {
    const Fractional multiplier =
        storage_->ColumnScalarProduct(v_index_, Transpose(*x));
    storage_->ColumnAddMultipleToDenseColumn(u_index_, multiplier, x);
  }

  // Computes y.T for a given row vector.
  void LeftMultiply(DenseRow* y) const {
    const Fractional multiplier = storage_->ColumnScalarProduct(u_index_, *y);
    storage_->ColumnAddMultipleToDenseColumn(v_index_, multiplier,
                                             reinterpret_cast<DenseColumn*>(y));
  }

  EntryIndex num_entries() const {
    return storage_->column(u_index_).num_entries() +
           storage_->column(v_index_).num_entries();
  }

 private:
  // This is only used in debug mode.
  Fractional ComputeUScalarV() const {
    DenseColumn dense_u;
    storage_->ColumnCopyToDenseColumn(u_index_, &dense_u);
    return storage_->ColumnScalarProduct(v_index_, Transpose(dense_u));
  }

  // Note that we allow copy and assignment so we can store a
  // RankOneUpdateElementaryMatrix in an STL container.
  const CompactSparseMatrix* storage_;
  ColIndex u_index_;
  ColIndex v_index_;
  Fractional mu_;
};

// A rank one update factorization corresponds to the product of k rank one
// update elementary matrices, i.e. T = T_0.T_1. ... .T_{k-1}
class RankOneUpdateFactorization {
 public:
  // TODO(user): make the 5% a parameter and share it between all the places
  // that switch between a sparse/dense version.
  RankOneUpdateFactorization() : hypersparse_ratio_(0.05) {}

  // This is currently only visible for testing.
  void set_hypersparse_ratio(double value) { hypersparse_ratio_ = value; }

  // Deletes all elementary matrices of this factorization.
  void Clear() {
    elementary_matrices_.clear();
    num_entries_ = 0;
  }

  // Updates the factorization.
  void Update(const RankOneUpdateElementaryMatrix& update_matrix) {
    elementary_matrices_.push_back(update_matrix);
    num_entries_ += update_matrix.num_entries();
  }

  // Left-solves all systems from right to left, i.e. y_i = y_{i+1}.(T_i)^{-1}
  void LeftSolve(DenseRow* y) const {
    RETURN_IF_NULL(y);
    for (int i = elementary_matrices_.size() - 1; i >= 0; --i) {
      elementary_matrices_[i].LeftSolve(y);
    }
  }

  // Same as LeftSolve(), but if the given non_zeros are not empty, then all
  // the new non-zeros in the result are appended to it.
  void LeftSolveWithNonZeros(ScatteredRow* y) const {
    RETURN_IF_NULL(y);
    if (y->non_zeros.empty()) {
      LeftSolve(&y->values);
      return;
    }

    // y->is_non_zero is always all false before and after this code.
    DCHECK(IsAllFalse(y->is_non_zero));
    y->RepopulateSparseMask();
    bool use_dense = y->ShouldUseDenseIteration(hypersparse_ratio_);
    for (int i = elementary_matrices_.size() - 1; i >= 0; --i) {
      if (use_dense) {
        elementary_matrices_[i].LeftSolve(&y->values);
      } else {
        elementary_matrices_[i].LeftSolveWithNonZeros(y);
        use_dense = y->ShouldUseDenseIteration(hypersparse_ratio_);
      }
    }
    y->ClearSparseMask();
    y->ClearNonZerosIfTooDense(hypersparse_ratio_);
  }

  // Right-solves all systems from left to right, i.e. T_i.d_{i+1} = d_i
  void RightSolve(DenseColumn* d) const {
    RETURN_IF_NULL(d);
    const size_t end = elementary_matrices_.size();
    for (int i = 0; i < end; ++i) {
      elementary_matrices_[i].RightSolve(d);
    }
  }

  // Same as RightSolve(), but if the given non_zeros are not empty, then all
  // the new non-zeros in the result are appended to it.
  void RightSolveWithNonZeros(ScatteredColumn* d) const {
    RETURN_IF_NULL(d);
    if (d->non_zeros.empty()) {
      RightSolve(&d->values);
      return;
    }

    // d->is_non_zero is always all false before and after this code.
    DCHECK(IsAllFalse(d->is_non_zero));
    d->RepopulateSparseMask();
    bool use_dense = d->ShouldUseDenseIteration(hypersparse_ratio_);
    const size_t end = elementary_matrices_.size();
    for (int i = 0; i < end; ++i) {
      if (use_dense) {
        elementary_matrices_[i].RightSolve(&d->values);
      } else {
        elementary_matrices_[i].RightSolveWithNonZeros(d);
        use_dense = d->ShouldUseDenseIteration(hypersparse_ratio_);
      }
    }
    d->ClearSparseMask();
    d->ClearNonZerosIfTooDense(hypersparse_ratio_);
  }

  EntryIndex num_entries() const { return num_entries_; }

 private:
  double hypersparse_ratio_;
  EntryIndex num_entries_;
  std::vector<RankOneUpdateElementaryMatrix> elementary_matrices_;
  DISALLOW_COPY_AND_ASSIGN(RankOneUpdateFactorization);
};

}  // namespace glop
}  // namespace operations_research

#endif  // OR_TOOLS_GLOP_RANK_ONE_UPDATE_H_