vendor_scheduling_sat.py 4.93 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves a simple shift scheduling problem."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from ortools.sat.python import cp_model


class SolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, num_vendors, num_hours, possible_schedules,
                 selected_schedules, hours_stat, min_vendors):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__solution_count = 0
        self.__num_vendors = num_vendors
        self.__num_hours = num_hours
        self.__possible_schedules = possible_schedules
        self.__selected_schedules = selected_schedules
        self.__hours_stat = hours_stat
        self.__min_vendors = min_vendors

    def on_solution_callback(self):
        """Called at each new solution."""
        self.__solution_count += 1
        print('Solution %i: ', self.__solution_count)
        print('  min vendors:', self.__min_vendors)
        for i in range(self.__num_vendors):
            print('  - vendor %i: ' % i, self.__possible_schedules[self.Value(
                self.__selected_schedules[i])])
        print()

        for j in range(self.__num_hours):
            print('  - # workers on day%2i: ' % j, end=' ')
            print(self.Value(self.__hours_stat[j]), end=' ')
            print()
        print()

    def solution_count(self):
        """Returns the number of solution found."""
        return self.__solution_count


def main():
    """Create the shift scheduling model and solve it."""
    # Create the model.
    model = cp_model.CpModel()

    #
    # data
    #
    num_vendors = 9
    num_hours = 10
    num_work_types = 1

    traffic = [100, 500, 100, 200, 320, 300, 200, 220, 300, 120]
    max_traffic_per_vendor = 100

    # Last columns are :
    #   index_of_the_schedule, sum of worked hours (per work type).
    # The index is useful for branching.
    possible_schedules = [[1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,
                           8], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,
                                4], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2,
                                     5], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 4],
                          [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 4,
                           3], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0]]

    num_possible_schedules = len(possible_schedules)
    selected_schedules = []
    vendors_stat = []
    hours_stat = []

    # Auxiliary data
    min_vendors = [t // max_traffic_per_vendor for t in traffic]
    all_vendors = range(num_vendors)
    all_hours = range(num_hours)

    #
    # declare variables
    #
    x = {}

    for v in all_vendors:
        tmp = []
        for h in all_hours:
            x[v, h] = model.NewIntVar(0, num_work_types, 'x[%i,%i]' % (v, h))
            tmp.append(x[v, h])
        selected_schedule = model.NewIntVar(0, num_possible_schedules - 1,
                                            's[%i]' % v)
        hours = model.NewIntVar(0, num_hours, 'h[%i]' % v)
        selected_schedules.append(selected_schedule)
        vendors_stat.append(hours)
        tmp.append(selected_schedule)
        tmp.append(hours)

        model.AddAllowedAssignments(tmp, possible_schedules)

    #
    # Statistics and constraints for each hour
    #
    for h in all_hours:
        workers = model.NewIntVar(0, 1000, 'workers[%i]' % h)
        model.Add(workers == sum(x[v, h] for v in all_vendors))
        hours_stat.append(workers)
        model.Add(workers * max_traffic_per_vendor >= traffic[h])

    #
    # Redundant constraint: sort selected_schedules
    #
    for v in range(num_vendors - 1):
        model.Add(selected_schedules[v] <= selected_schedules[v + 1])

    # Solve model.
    solver = cp_model.CpSolver()
    solution_printer = SolutionPrinter(num_vendors, num_hours,
                                       possible_schedules, selected_schedules,
                                       hours_stat, min_vendors)
    status = solver.SearchForAllSolutions(model, solution_printer)
    print('Status = %s' % solver.StatusName(status))

    print('Statistics')
    print('  - conflicts : %i' % solver.NumConflicts())
    print('  - branches  : %i' % solver.NumBranches())
    print('  - wall time : %f s' % solver.WallTime())
    print(
        '  - number of solutions found: %i' % solution_printer.solution_count())


if __name__ == '__main__':
    main()