shift_scheduling_sat.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Creates a shift scheduling problem and solves it."""

from __future__ import print_function

import argparse

from ortools.sat.python import cp_model

from google.protobuf import text_format

PARSER = argparse.ArgumentParser()
PARSER.add_argument(
    '--output_proto',
    default="",
    help='Output file to write the cp_model'
    'proto to.')
PARSER.add_argument('--params', default="", help='Sat solver parameters.')


def negated_bounded_span(works, start, length):
    """Filters an isolated sub-sequence of variables assined to True.

  Extract the span of Boolean variables [start, start + length), negate them,
  and if there is variables to the left/right of this span, surround the span by
  them in non negated form.

  Args:
    works: a list of variables to extract the span from.
    start: the start to the span.
    length: the length of the span.

  Returns:
    a list of variables which conjunction will be false if the sub-list is
    assigned to True, and correctly bounded by variables assigned to False,
    or by the start or end of works.
  """
    sequence = []
    # Left border (start of works, or works[start - 1])
    if start > 0:
        sequence.append(works[start - 1])
    for i in range(length):
        sequence.append(works[start + i].Not())
    # Right border (end of works or works[start + length])
    if start + length < len(works):
        sequence.append(works[start + length])
    return sequence


def add_soft_sequence_constraint(model, works, hard_min, soft_min, min_cost,
                                 soft_max, hard_max, max_cost, prefix):
    """Sequence constraint on true variables with soft and hard bounds.

  This constraint look at every maximal contiguous sequence of variables
  assigned to true. If forbids sequence of length < hard_min or > hard_max.
  Then it creates penalty terms if the length is < soft_min or > soft_max.

  Args:
    model: the sequence constraint is built on this model.
    works: a list of Boolean variables.
    hard_min: any sequence of true variables must have a length of at least
      hard_min.
    soft_min: any sequence should have a length of at least soft_min, or a
      linear penalty on the delta will be added to the objective.
    min_cost: the coefficient of the linear penalty if the length is less than
      soft_min.
    soft_max: any sequence should have a length of at most soft_max, or a linear
      penalty on the delta will be added to the objective.
    hard_max: any sequence of true variables must have a length of at most
      hard_max.
    max_cost: the coefficient of the linear penalty if the length is more than
      soft_max.
    prefix: a base name for penalty literals.

  Returns:
    a tuple (variables_list, coefficient_list) containing the different
    penalties created by the sequence constraint.
  """
    cost_literals = []
    cost_coefficients = []

    # Forbid sequences that are too short.
    for length in range(1, hard_min):
        for start in range(len(works) - length + 1):
            model.AddBoolOr(negated_bounded_span(works, start, length))

    # Penalize sequences that are below the soft limit.
    if min_cost > 0:
        for length in range(hard_min, soft_min):
            for start in range(len(works) - length + 1):
                span = negated_bounded_span(works, start, length)
                name = ': under_span(start=%i, length=%i)' % (start, length)
                lit = model.NewBoolVar(prefix + name)
                span.append(lit)
                model.AddBoolOr(span)
                cost_literals.append(lit)
                # We filter exactly the sequence with a short length.
                # The penalty is proportional to the delta with soft_min.
                cost_coefficients.append(min_cost * (soft_min - length))

    # Penalize sequences that are above the soft limit.
    if max_cost > 0:
        for length in range(soft_max + 1, hard_max + 1):
            for start in range(len(works) - length + 1):
                span = negated_bounded_span(works, start, length)
                name = ': over_span(start=%i, length=%i)' % (start, length)
                lit = model.NewBoolVar(prefix + name)
                span.append(lit)
                model.AddBoolOr(span)
                cost_literals.append(lit)
                # Cost paid is max_cost * excess length.
                cost_coefficients.append(max_cost * (length - soft_max))

    # Just forbid any sequence of true variables with length hard_max + 1
    for start in range(len(works) - hard_max):
        model.AddBoolOr(
            [works[i].Not() for i in range(start, start + hard_max + 1)])
    return cost_literals, cost_coefficients


def add_soft_sum_constraint(model, works, hard_min, soft_min, min_cost,
                            soft_max, hard_max, max_cost, prefix):
    """Sum constraint with soft and hard bounds.

  This constraint counts the variables assigned to true from works.
  If forbids sum < hard_min or > hard_max.
  Then it creates penalty terms if the sum is < soft_min or > soft_max.

  Args:
    model: the sequence constraint is built on this model.
    works: a list of Boolean variables.
    hard_min: any sequence of true variables must have a sum of at least
      hard_min.
    soft_min: any sequence should have a sum of at least soft_min, or a linear
      penalty on the delta will be added to the objective.
    min_cost: the coefficient of the linear penalty if the sum is less than
      soft_min.
    soft_max: any sequence should have a sum of at most soft_max, or a linear
      penalty on the delta will be added to the objective.
    hard_max: any sequence of true variables must have a sum of at most
      hard_max.
    max_cost: the coefficient of the linear penalty if the sum is more than
      soft_max.
    prefix: a base name for penalty variables.

  Returns:
    a tuple (variables_list, coefficient_list) containing the different
    penalties created by the sequence constraint.
  """
    cost_variables = []
    cost_coefficients = []
    sum_var = model.NewIntVar(hard_min, hard_max, '')
    # This adds the hard constraints on the sum.
    model.Add(sum_var == sum(works))

    # Penalize sums below the soft_min target.
    if soft_min > hard_min and min_cost > 0:
        delta = model.NewIntVar(-len(works), len(works), '')
        model.Add(delta == soft_min - sum_var)
        # TODO(user): Compare efficiency with only excess >= soft_min - sum_var.
        excess = model.NewIntVar(0, 7, prefix + ': under_sum')
        model.AddMaxEquality(excess, [delta, 0])
        cost_variables.append(excess)
        cost_coefficients.append(min_cost)

    # Penalize sums above the soft_max target.
    if soft_max < hard_max and max_cost > 0:
        delta = model.NewIntVar(-7, 7, '')
        model.Add(delta == sum_var - soft_max)
        excess = model.NewIntVar(0, 7, prefix + ': over_sum')
        model.AddMaxEquality(excess, [delta, 0])
        cost_variables.append(excess)
        cost_coefficients.append(max_cost)

    return cost_variables, cost_coefficients


def solve_shift_scheduling(params, output_proto):
    """Solves the shift scheduling problem."""
    # Data
    num_employees = 8
    num_weeks = 3
    shifts = ['O', 'M', 'A', 'N']

    # Fixed assignment: (employee, shift, day).
    # This fixes the first 2 days of the schedule.
    fixed_assignments = [
        (0, 0, 0),
        (1, 0, 0),
        (2, 1, 0),
        (3, 1, 0),
        (4, 2, 0),
        (5, 2, 0),
        (6, 2, 3),
        (7, 3, 0),
        (0, 1, 1),
        (1, 1, 1),
        (2, 2, 1),
        (3, 2, 1),
        (4, 2, 1),
        (5, 0, 1),
        (6, 0, 1),
        (7, 3, 1),
    ]

    # Request: (employee, shift, day, weight)
    # A negative weight indicates that the employee desire this assignment.
    requests = [
        # Employee 3 wants the first Saturday off.
        (3, 0, 5, -2),
        # Employee 5 wants a night shift on the second Thursday.
        (5, 3, 10, -2),
        # Employee 2 does not want a night shift on the first Friday.
        (2, 3, 4, 4)
    ]

    # Shift constraints on continuous sequence :
    #     (shift, hard_min, soft_min, min_penalty,
    #             soft_max, hard_max, max_penalty)
    shift_constraints = [
        # One or two consecutive days of rest, this is a hard constraint.
        (0, 1, 1, 0, 2, 2, 0),
        # betweem 2 and 3 consecutive days of night shifts, 1 and 4 are
        # possible but penalized.
        (3, 1, 2, 20, 3, 4, 5),
    ]

    # Weekly sum constraints on shifts days:
    #     (shift, hard_min, soft_min, min_penalty,
    #             soft_max, hard_max, max_penalty)
    weekly_sum_constraints = [
        # Constraints on rests per week.
        (0, 1, 2, 7, 2, 3, 4),
        # At least 1 night shift per week (penalized). At most 4 (hard).
        (3, 0, 1, 3, 4, 4, 0),
    ]

    # Penalized transitions:
    #     (previous_shift, next_shift, penalty (0 means forbidden))
    penalized_transitions = [
        # Afternoon to night has a penalty of 4.
        (2, 3, 4),
        # Night to morning is forbidden.
        (3, 1, 0),
    ]

    # daily demands for work shifts (morning, afternon, night) for each day
    # of the week starting on Monday.
    weekly_cover_demands = [
        (2, 3, 1),  # Monday
        (2, 3, 1),  # Tuesday
        (2, 2, 2),  # Wednesday
        (2, 3, 1),  # Thursday
        (2, 2, 2),  # Friday
        (1, 2, 3),  # Saturday
        (1, 3, 1),  # Sunday
    ]

    # Penalty for exceeding the cover constraint per shift type.
    excess_cover_penalties = (2, 2, 5)

    num_days = num_weeks * 7
    num_shifts = len(shifts)

    model = cp_model.CpModel()

    work = {}
    for e in range(num_employees):
        for s in range(num_shifts):
            for d in range(num_days):
                work[e, s, d] = model.NewBoolVar('work%i_%i_%i' % (e, s, d))

    # Linear terms of the objective in a minimization context.
    obj_int_vars = []
    obj_int_coeffs = []
    obj_bool_vars = []
    obj_bool_coeffs = []

    # Exactly one shift per day.
    for e in range(num_employees):
        for d in range(num_days):
            model.Add(sum(work[e, s, d] for s in range(num_shifts)) == 1)

    # Fixed assignments.
    for e, s, d in fixed_assignments:
        model.Add(work[e, s, d] == 1)

    # Employee requests
    for e, s, d, w in requests:
        obj_bool_vars.append(work[e, s, d])
        obj_bool_coeffs.append(w)

    # Shift constraints
    for ct in shift_constraints:
        shift, hard_min, soft_min, min_cost, soft_max, hard_max, max_cost = ct
        for e in range(num_employees):
            works = [work[e, shift, d] for d in range(num_days)]
            variables, coeffs = add_soft_sequence_constraint(
                model, works, hard_min, soft_min, min_cost, soft_max, hard_max,
                max_cost, 'shift_constraint(employee %i, shift %i)' % (e,
                                                                       shift))
            obj_bool_vars.extend(variables)
            obj_bool_coeffs.extend(coeffs)

    # Weekly sum constraints
    for ct in weekly_sum_constraints:
        shift, hard_min, soft_min, min_cost, soft_max, hard_max, max_cost = ct
        for e in range(num_employees):
            for w in range(num_weeks):
                works = [work[e, shift, d + w * 7] for d in range(7)]
                variables, coeffs = add_soft_sum_constraint(
                    model, works, hard_min, soft_min, min_cost, soft_max,
                    hard_max, max_cost,
                    'weekly_sum_constraint(employee %i, shift %i, week %i)' %
                    (e, shift, w))
                obj_int_vars.extend(variables)
                obj_int_coeffs.extend(coeffs)

    # Penalized transitions
    for previous_shift, next_shift, cost in penalized_transitions:
        for e in range(num_employees):
            for d in range(num_days - 1):
                transition = [
                    work[e, previous_shift, d].Not(),
                    work[e, next_shift, d + 1].Not()
                ]
                if cost == 0:
                    model.AddBoolOr(transition)
                else:
                    trans_var = model.NewBoolVar(
                        'transition (employee=%i, day=%i)' % (e, d))
                    transition.append(trans_var)
                    model.AddBoolOr(transition)
                    obj_bool_vars.append(trans_var)
                    obj_bool_coeffs.append(cost)

    # Cover constraints
    for s in range(1, num_shifts):
        for w in range(num_weeks):
            for d in range(7):
                works = [work[e, s, w * 7 + d] for e in range(num_employees)]
                # Ignore Off shift.
                min_demand = weekly_cover_demands[d][s - 1]
                worked = model.NewIntVar(min_demand, num_employees, '')
                model.Add(worked == sum(works))
                over_penalty = excess_cover_penalties[s - 1]
                if over_penalty > 0:
                    name = 'excess_demand(shift=%i, week=%i, day=%i)' % (s, w,
                                                                         d)
                    excess = model.NewIntVar(0, num_employees - min_demand,
                                             name)
                    model.Add(excess == worked - min_demand)
                    obj_int_vars.append(excess)
                    obj_int_coeffs.append(over_penalty)

    # Objective
    model.Minimize(
        sum(obj_bool_vars[i] * obj_bool_coeffs[i]
            for i in range(len(obj_bool_vars)))
        + sum(obj_int_vars[i] * obj_int_coeffs[i]
              for i in range(len(obj_int_vars))))

    if output_proto:
        print('Writing proto to %s' % output_proto)
        with open(output_proto, 'w') as text_file:
            text_file.write(str(model))

    # Solve the model.
    solver = cp_model.CpSolver()
    solver.parameters.num_search_workers = 8
    if params:
        text_format.Merge(params, solver.parameters)
    solution_printer = cp_model.ObjectiveSolutionPrinter()
    status = solver.SolveWithSolutionCallback(model, solution_printer)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print()
        header = '          '
        for w in range(num_weeks):
            header += 'M T W T F S S '
        print(header)
        for e in range(num_employees):
            schedule = ''
            for d in range(num_days):
                for s in range(num_shifts):
                    if solver.BooleanValue(work[e, s, d]):
                        schedule += shifts[s] + ' '
            print('worker %i: %s' % (e, schedule))
        print()
        print('Penalties:')
        for i, var in enumerate(obj_bool_vars):
            if solver.BooleanValue(var):
                penalty = obj_bool_coeffs[i]
                if penalty > 0:
                    print('  %s violated, penalty=%i' % (var.Name(), penalty))
                else:
                    print('  %s fulfilled, gain=%i' % (var.Name(), -penalty))

        for i, var in enumerate(obj_int_vars):
            if solver.Value(var) > 0:
                print('  %s violated by %i, linear penalty=%i' %
                      (var.Name(), solver.Value(var), obj_int_coeffs[i]))

    print()
    print(solver.ResponseStats())


def main(args):
    """Main."""
    solve_shift_scheduling(args.params, args.output_proto)


if __name__ == '__main__':
    main(PARSER.parse_args())