nontransitive_dice.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

  Nontransitive dice in Google CP Solver.

  From
  http://en.wikipedia.org/wiki/Nontransitive_dice
  '''
  A set of nontransitive dice is a set of dice for which the relation
  'is more likely to roll a higher number' is not transitive. See also
  intransitivity.

  This situation is similar to that in the game Rock, Paper, Scissors,
  in which each element has an advantage over one choice and a
  disadvantage to the other.
  '''

  I start with the 3 dice version
  '''
     * die A has sides {2,2,4,4,9,9},
     * die B has sides {1,1,6,6,8,8}, and
     * die C has sides {3,3,5,5,7,7}.
  '''

  3 dice:
  Maximum winning: 27
  comp: [19, 27, 19]
  dice:
  [[0, 0, 3, 6, 6, 6],
  [2, 5, 5, 5, 5, 5],
  [1, 1, 4, 4, 4, 7]]
  max_win: 27

  Number of solutions:  1
  Nodes: 1649873  Time: 25.94
  getFailures: 1649853
  getBacktracks: 1649873
  getPropags: 98105090

 Max winnings where they are the same: 21
   comp: [21, 21, 21]
   dice:
   [[0, 0, 3, 3, 3, 6],
   [2, 2, 2, 2, 2, 5],
   [1, 1, 1, 4, 4, 4]]
   max_win: 21

   Compare with these models:
   * MiniZinc: http://hakank.org/minizinc/nontransitive_dice.mzn
   * Comet: http://hakank.org/comet/nontransitive_dice.co


  This model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also see my other Google CP Solver models:
  http://www.hakank.org/google_or_tools/
"""
from __future__ import print_function
import sys
from ortools.constraint_solver import pywrapcp


def main(m=3, n=6, minimize_val=0):

  # Create the solver.
  solver = pywrapcp.Solver("Nontransitive dice")

  #
  # data
  #
  print("number of dice:", m)
  print("number of sides:", n)

  #
  # declare variables
  #

  dice = {}
  for i in range(m):
    for j in range(n):
      dice[(i, j)] = solver.IntVar(1, n * 2, "dice(%i,%i)" % (i, j))
  dice_flat = [dice[(i, j)] for i in range(m) for j in range(n)]

  comp = {}
  for i in range(m):
    for j in range(2):
      comp[(i, j)] = solver.IntVar(0, n * n, "comp(%i,%i)" % (i, j))
  comp_flat = [comp[(i, j)] for i in range(m) for j in range(2)]

  # The following variables are for summaries or objectives
  gap = [solver.IntVar(0, n * n, "gap(%i)" % i) for i in range(m)]
  gap_sum = solver.IntVar(0, m * n * n, "gap_sum")

  max_val = solver.IntVar(0, n * 2, "max_val")
  max_win = solver.IntVar(0, n * n, "max_win")

  # number of occurrences of each value of the dice
  counts = [solver.IntVar(0, n * m, "counts(%i)" % i) for i in range(n * 2 + 1)]

  #
  # constraints
  #

  # number of occurrences for each number
  solver.Add(solver.Distribute(dice_flat, list(range(n * 2 + 1)), counts))

  solver.Add(max_win == solver.Max(comp_flat))
  solver.Add(max_val == solver.Max(dice_flat))

  # order of the number of each die, lowest first
  [
      solver.Add(dice[(i, j)] <= dice[(i, j + 1)])
      for i in range(m)
      for j in range(n - 1)
  ]

  # nontransitivity
  [comp[i, 0] > comp[i, 1] for i in range(m)],

  # probability gap
  [solver.Add(gap[i] == comp[i, 0] - comp[i, 1]) for i in range(m)]
  [solver.Add(gap[i] > 0) for i in range(m)]
  solver.Add(gap_sum == solver.Sum(gap))

  # and now we roll...
  #  Number of wins for [A vs B, B vs A]
  for d in range(m):
    b1 = [
        solver.IsGreaterVar(dice[d % m, r1], dice[(d + 1) % m, r2])
        for r1 in range(n)
        for r2 in range(n)
    ]
    solver.Add(comp[d % m, 0] == solver.Sum(b1))

    b2 = [
        solver.IsGreaterVar(dice[(d + 1) % m, r1], dice[d % m, r2])
        for r1 in range(n)
        for r2 in range(n)
    ]
    solver.Add(comp[d % m, 1] == solver.Sum(b2))

  # objective
  if minimize_val != 0:
    print("Minimizing max_val")
    objective = solver.Minimize(max_val, 1)
    # other experiments
    # objective = solver.Maximize(max_win, 1)
    # objective = solver.Maximize(gap_sum, 1)

  #
  # solution and search
  #
  db = solver.Phase(dice_flat + comp_flat, solver.INT_VAR_DEFAULT,
                    solver.ASSIGN_MIN_VALUE)

  if minimize_val:
    solver.NewSearch(db, [objective])
  else:
    solver.NewSearch(db)

  num_solutions = 0
  while solver.NextSolution():
    print("gap_sum:", gap_sum.Value())
    print("gap:", [gap[i].Value() for i in range(m)])
    print("max_val:", max_val.Value())
    print("max_win:", max_win.Value())
    print("dice:")
    for i in range(m):
      for j in range(n):
        print(dice[(i, j)].Value(), end=" ")
      print()
    print("comp:")
    for i in range(m):
      for j in range(2):
        print(comp[(i, j)].Value(), end=" ")
      print()
    print("counts:", [counts[i].Value() for i in range(n * 2 + 1)])
    print()

    num_solutions += 1

  solver.EndSearch()

  print()
  print("num_solutions:", num_solutions)
  print("failures:", solver.Failures())
  print("branches:", solver.Branches())
  print("WallTime:", solver.WallTime())


m = 3  # number of dice
n = 6  # number of sides of each die
minimize_val = 0  # Minimizing max value (0: no, 1: yes)
if __name__ == "__main__":
  if len(sys.argv) > 1:
    m = int(sys.argv[1])
  if len(sys.argv) > 2:
    n = int(sys.argv[2])
  if len(sys.argv) > 3:
    minimize_val = int(sys.argv[3])

  main(m, n, minimize_val)