crypto.py 3.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

  Crypto problem in Google CP Solver.

  Prolog benchmark problem GNU Prolog (crypta.pl)
  '''
  Name           : crypta.pl
  Title          : crypt-arithmetic
  Original Source: P. Van Hentenryck's book
  Adapted by     : Daniel Diaz - INRIA France
  Date           : September 1992

  Solve the operation:

     B A I J J A J I I A H F C F E B B J E A
   + D H F G A B C D I D B I F F A G F E J E
   -----------------------------------------
   = G J E G A C D D H F A F J B F I H E E F
  '''

  Compare with the following models:
  * MiniZinc: http://www.hakank.org/minizinc/crypta.mzn
  * Comet   : http://www.hakank.org/comet/crypta.co
  * ECLiPSe : http://www.hakank.org/eclipse/crypta.ecl
  * SICStus : http://hakank.org/sicstus/crypta.pl


  This model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also see my other Google CP Solver models:
  http://www.hakank.org/google_or_tools/
"""
from __future__ import print_function
from ortools.constraint_solver import pywrapcp


def main():

  # Create the solver.
  solver = pywrapcp.Solver("Crypto problem")

  #
  # data
  #
  num_letters = 26

  BALLET = 45
  CELLO = 43
  CONCERT = 74
  FLUTE = 30
  FUGUE = 50
  GLEE = 66
  JAZZ = 58
  LYRE = 47
  OBOE = 53
  OPERA = 65
  POLKA = 59
  QUARTET = 50
  SAXOPHONE = 134
  SCALE = 51
  SOLO = 37
  SONG = 61
  SOPRANO = 82
  THEME = 72
  VIOLIN = 100
  WALTZ = 34

  #
  # variables
  #
  LD = [solver.IntVar(1, num_letters, "LD[%i]" % i) for i in range(num_letters)]
  A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z = LD

  #
  # constraints
  #
  solver.Add(solver.AllDifferent(LD))
  solver.Add(B + A + L + L + E + T == BALLET)
  solver.Add(C + E + L + L + O == CELLO)
  solver.Add(C + O + N + C + E + R + T == CONCERT)
  solver.Add(F + L + U + T + E == FLUTE)
  solver.Add(F + U + G + U + E == FUGUE)
  solver.Add(G + L + E + E == GLEE)
  solver.Add(J + A + Z + Z == JAZZ)
  solver.Add(L + Y + R + E == LYRE)
  solver.Add(O + B + O + E == OBOE)
  solver.Add(O + P + E + R + A == OPERA)
  solver.Add(P + O + L + K + A == POLKA)
  solver.Add(Q + U + A + R + T + E + T == QUARTET)
  solver.Add(S + A + X + O + P + H + O + N + E == SAXOPHONE)
  solver.Add(S + C + A + L + E == SCALE)
  solver.Add(S + O + L + O == SOLO)
  solver.Add(S + O + N + G == SONG)
  solver.Add(S + O + P + R + A + N + O == SOPRANO)
  solver.Add(T + H + E + M + E == THEME)
  solver.Add(V + I + O + L + I + N == VIOLIN)
  solver.Add(W + A + L + T + Z == WALTZ)

  #
  # search and result
  #
  db = solver.Phase(LD, solver.CHOOSE_MIN_SIZE_LOWEST_MIN,
                    solver.ASSIGN_CENTER_VALUE)

  solver.NewSearch(db)

  num_solutions = 0
  str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  while solver.NextSolution():
    num_solutions += 1
    for (letter, val) in [(str[i], LD[i].Value()) for i in range(num_letters)]:
      print("%s: %i" % (letter, val))
    print()

  solver.EndSearch()

  print()
  print("num_solutions:", num_solutions)
  print("failures:", solver.Failures())
  print("branches:", solver.Branches())
  print("WallTime:", solver.WallTime())


if __name__ == "__main__":
  main()