cslinearprogramming.cs 6.7 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using Google.OrTools.LinearSolver;

public class CsLinearProgramming
{
  private static void RunLinearProgrammingExample(String solverType)
  {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
21 22
    Console.WriteLine($"---- Linear programming example with {solverType} ----");

Valentin Platzgummer's avatar
Valentin Platzgummer committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    Solver solver = Solver.CreateSolver("IntegerProgramming", solverType);
    if (solver == null)
    {
      Console.WriteLine("Could not create solver " + solverType);
      return;
    }
    // x1, x2 and x3 are continuous non-negative variables.
    Variable x1 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x1");
    Variable x2 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x2");
    Variable x3 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x3");

    // Maximize 10 * x1 + 6 * x2 + 4 * x3.
    Objective objective = solver.Objective();
    objective.SetCoefficient(x1, 10);
    objective.SetCoefficient(x2, 6);
    objective.SetCoefficient(x3, 4);
    objective.SetMaximization();

    // x1 + x2 + x3 <= 100.
    Constraint c0 = solver.MakeConstraint(double.NegativeInfinity, 100.0);
    c0.SetCoefficient(x1, 1);
    c0.SetCoefficient(x2, 1);
    c0.SetCoefficient(x3, 1);

    // 10 * x1 + 4 * x2 + 5 * x3 <= 600.
    Constraint c1 = solver.MakeConstraint(double.NegativeInfinity, 600.0);
    c1.SetCoefficient(x1, 10);
    c1.SetCoefficient(x2, 4);
    c1.SetCoefficient(x3, 5);

    // 2 * x1 + 2 * x2 + 6 * x3 <= 300.
    Constraint c2 = solver.MakeConstraint(double.NegativeInfinity, 300.0);
    c2.SetCoefficient(x1, 2);
    c2.SetCoefficient(x2, 2);
    c2.SetCoefficient(x3, 6);

    Console.WriteLine("Number of variables = " + solver.NumVariables());
    Console.WriteLine("Number of constraints = " + solver.NumConstraints());

    Solver.ResultStatus resultStatus = solver.Solve();

    // Check that the problem has an optimal solution.
    if (resultStatus != Solver.ResultStatus.OPTIMAL) {
      Console.WriteLine("The problem does not have an optimal solution!");
      return;
    }

    Console.WriteLine("Problem solved in " + solver.WallTime() +
                      " milliseconds");

    // The objective value of the solution.
    Console.WriteLine("Optimal objective value = " +
                      solver.Objective().Value());

    // The value of each variable in the solution.
    Console.WriteLine("x1 = " + x1.SolutionValue());
    Console.WriteLine("x2 = " + x2.SolutionValue());
    Console.WriteLine("x3 = " + x3.SolutionValue());

    Console.WriteLine("Advanced usage:");
    double[] activities = solver.ComputeConstraintActivities();

    Console.WriteLine("Problem solved in " + solver.Iterations() +
                       " iterations");
    Console.WriteLine("x1: reduced cost = " + x1.ReducedCost());
    Console.WriteLine("x2: reduced cost = " + x2.ReducedCost());
    Console.WriteLine("x3: reduced cost = " + x3.ReducedCost());
    Console.WriteLine("c0: dual value = " + c0.DualValue());
    Console.WriteLine("    activity = " + activities[c0.Index()]);
    Console.WriteLine("c1: dual value = " + c1.DualValue());
    Console.WriteLine("    activity = " + activities[c1.Index()]);
    Console.WriteLine("c2: dual value = " + c2.DualValue());
    Console.WriteLine("    activity = " + activities[c2.Index()]);
  }

  private static void RunLinearProgrammingExampleNaturalApi(
      String solverType, bool printModel)
  {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
101 102 103
    Console.WriteLine(
        $"---- Linear programming example (Natural API) with {solverType} ----");

Valentin Platzgummer's avatar
Valentin Platzgummer committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Solver solver = Solver.CreateSolver("IntegerProgramming", solverType);
    if (solver == null)
    {
      Console.WriteLine("Could not create solver " + solverType);
      return;
    }
    // x1, x2 and x3 are continuous non-negative variables.
    Variable x1 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x1");
    Variable x2 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x2");
    Variable x3 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x3");

    solver.Maximize(10 * x1 + 6 * x2 + 4 * x3);
    Constraint c0 = solver.Add(x1 + x2 + x3 <= 100);
    Constraint c1 = solver.Add(10 * x1 + x2 * 4 + 5 * x3 <= 600);
    Constraint c2 = solver.Add(2 * x1 + 2 * x2 + 6 * x3 <= 300);

    Console.WriteLine("Number of variables = " + solver.NumVariables());
    Console.WriteLine("Number of constraints = " + solver.NumConstraints());

    if (printModel) {
      string model = solver.ExportModelAsLpFormat(false);
      Console.WriteLine(model);
    }

    Solver.ResultStatus resultStatus = solver.Solve();

    // Check that the problem has an optimal solution.
    if (resultStatus != Solver.ResultStatus.OPTIMAL) {
      Console.WriteLine("The problem does not have an optimal solution!");
      return;
    }

    Console.WriteLine("Problem solved in " + solver.WallTime() +
                      " milliseconds");

    // The objective value of the solution.
    Console.WriteLine("Optimal objective value = " +
                      solver.Objective().Value());

    // The value of each variable in the solution.
    Console.WriteLine("x1 = " + x1.SolutionValue());
    Console.WriteLine("x2 = " + x2.SolutionValue());
    Console.WriteLine("x3 = " + x3.SolutionValue());

    Console.WriteLine("Advanced usage:");
    double[] activities = solver.ComputeConstraintActivities();
    Console.WriteLine("Problem solved in " + solver.Iterations() +
                       " iterations");
    Console.WriteLine("x1: reduced cost = " + x1.ReducedCost());
    Console.WriteLine("x2: reduced cost = " + x2.ReducedCost());
    Console.WriteLine("x3: reduced cost = " + x3.ReducedCost());
    Console.WriteLine("c0: dual value = " + c0.DualValue());
    Console.WriteLine("    activity = " + activities[c0.Index()]);
    Console.WriteLine("c1: dual value = " + c1.DualValue());
    Console.WriteLine("    activity = " + activities[c1.Index()]);
    Console.WriteLine("c2: dual value = " + c2.DualValue());
    Console.WriteLine("    activity = " + activities[c2.Index()]);
  }

  static void Main()
  {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
165 166 167 168 169 170 171
    RunLinearProgrammingExample("GLOP");
    RunLinearProgrammingExample("GLPK_LP");
    RunLinearProgrammingExample("CLP");

    RunLinearProgrammingExampleNaturalApi("GLOP", true);
    RunLinearProgrammingExampleNaturalApi("GLPK_LP", false);
    RunLinearProgrammingExampleNaturalApi("CLP", false);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
172 173
  }
}