MipVarArray.cs 3.31 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// [START program]
// [START import]
using System;
using Google.OrTools.LinearSolver;
// [END import]

// [START program_part1]
public class MipVarArray
{
  // [START data_model]
  class DataModel
  {
    public double[,] ConstraintCoeffs = {
      {5, 7, 9, 2, 1},
      {18, 4, -9, 10, 12},
      {4, 7, 3, 8, 5},
      {5, 13, 16, 3, -7},
    };
    public double[] Bounds = { 250, 285, 211, 315 };
    public double[] ObjCoeffs = { 7, 8, 2, 9, 6 };
    public int NumVars = 5;
    public int NumConstraints = 4;
  }
  // [END data_model]
  public static void Main()
  {
    // [START data]
    DataModel data = new DataModel();
    // [END data]
    // [END program_part1]

    // [START solver]
    // Create the linear solver with the CBC backend.
Valentin Platzgummer's avatar
Valentin Platzgummer committed
47
    Solver solver = Solver.CreateSolver("MipVarArray", "CBC");
Valentin Platzgummer's avatar
Valentin Platzgummer committed
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    // [END solver]

    // [START program_part2]
    // [START variables]
    Variable[] x = new Variable[data.NumVars];
    for (int j = 0; j < data.NumVars; j++)
    {
      x[j] = solver.MakeIntVar(0.0, double.PositiveInfinity, $"x_{j}");
    }
    Console.WriteLine("Number of variables = " + solver.NumVariables());
    // [END variables]

    // [START constraints]
    for (int i = 0; i < data.NumConstraints; ++i)
    {
      Constraint constraint = solver.MakeConstraint(0, data.Bounds[i], "");
      for (int j = 0; j < data.NumVars; ++j)
      {
        constraint.SetCoefficient(x[j], data.ConstraintCoeffs[i, j]);
      }
    }
    Console.WriteLine("Number of constraints = " + solver.NumConstraints());
    // [END constraints]

    // [START objective]
    Objective objective = solver.Objective();
    for (int j = 0; j < data.NumVars; ++j)
    {
      objective.SetCoefficient(x[j], data.ObjCoeffs[j]);
    }
    objective.SetMaximization();
    // [END objective]

    // [START solve]
    Solver.ResultStatus resultStatus = solver.Solve();
    // [END solve]

    // [START print_solution]
    // Check that the problem has an optimal solution.
    if (resultStatus != Solver.ResultStatus.OPTIMAL)
    {
      Console.WriteLine("The problem does not have an optimal solution!");
      return;
    }

    Console.WriteLine("Solution:");
    Console.WriteLine("Optimal objective value = " + solver.Objective().Value());

    for (int j = 0; j < data.NumVars; ++j)
    {
      Console.WriteLine("x[" + j + "] = " + x[j].SolutionValue());
    }
    // [END print_solution]

    // [START advanced]
    Console.WriteLine("\nAdvanced usage:");
    Console.WriteLine("Problem solved in " + solver.WallTime() + " milliseconds");
    Console.WriteLine("Problem solved in " + solver.Iterations() + " iterations");
    Console.WriteLine("Problem solved in " + solver.Nodes() + " branch-and-bound nodes");
    // [END advanced]
  }
}
// [END program_part2]
// [END program]