APMCompassCal.cc 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*=====================================================================

 QGroundControl Open Source Ground Control Station
 
 (c) 2009, 2015 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
 
 This file is part of the QGROUNDCONTROL project
 
 QGROUNDCONTROL is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 
 QGROUNDCONTROL is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
 
 ======================================================================*/

#include "APMCompassCal.h"
#include "AutoPilotPlugin.h"

QGC_LOGGING_CATEGORY(APMCompassCalLog, "APMCompassCalLog")

const float CalWorkerThread::mag_sphere_radius = 0.2f;
const unsigned int CalWorkerThread::calibration_sides = 6;
const unsigned int CalWorkerThread::calibration_total_points = 240;
const unsigned int CalWorkerThread::calibraton_duration_seconds = CalWorkerThread::calibration_sides * 10;

CalWorkerThread::CalWorkerThread(Vehicle* vehicle, QObject* parent)
    : QThread(parent)
    , _vehicle(vehicle)
    , _cancel(false)
{

}

void CalWorkerThread::run(void)
{
    if (calibrate() == calibrate_return_ok) {
        _emitVehicleTextMessage(QStringLiteral("[cal] progress <100>"));
        _emitVehicleTextMessage(QStringLiteral("[cal] calibration done: mag"));
    }
}

void CalWorkerThread::_emitVehicleTextMessage(const QString& message)
{
    emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message);
    qDebug() << message;
}

unsigned CalWorkerThread::progress_percentage(mag_worker_data_t* worker_data)
{
    return 100 * ((float)worker_data->done_count) / calibration_sides;
}

CalWorkerThread::calibrate_return CalWorkerThread::calibrate(void)
{
    calibrate_return result = calibrate_return_ok;

    mag_worker_data_t worker_data;

    worker_data.done_count = 0;
    worker_data.calibration_points_perside = calibration_total_points / calibration_sides;
    worker_data.calibration_interval_perside_seconds = calibraton_duration_seconds / calibration_sides;
    worker_data.calibration_interval_perside_useconds = worker_data.calibration_interval_perside_seconds * 1000 * 1000;

    // Collect data for all sides
    worker_data.side_data_collected[DETECT_ORIENTATION_RIGHTSIDE_UP] =  false;
    worker_data.side_data_collected[DETECT_ORIENTATION_LEFT] =          false;
    worker_data.side_data_collected[DETECT_ORIENTATION_NOSE_DOWN] =     false;
    worker_data.side_data_collected[DETECT_ORIENTATION_TAIL_DOWN] =     false;
    worker_data.side_data_collected[DETECT_ORIENTATION_UPSIDE_DOWN] =   false;
    worker_data.side_data_collected[DETECT_ORIENTATION_RIGHT] =         false;

    for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
        // Initialize to no memory allocated
        worker_data.x[cur_mag] = NULL;
        worker_data.y[cur_mag] = NULL;
        worker_data.z[cur_mag] = NULL;
        worker_data.calibration_counter_total[cur_mag] = 0;
    }

    const unsigned int calibration_points_maxcount = calibration_sides * worker_data.calibration_points_perside;

    for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
        if (rgCompassAvailable[cur_mag]) {
            worker_data.x[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
            worker_data.y[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
            worker_data.z[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
            if (worker_data.x[cur_mag] == NULL || worker_data.y[cur_mag] == NULL || worker_data.z[cur_mag] == NULL) {
                _emitVehicleTextMessage("[cal] ERROR: out of memory");
                result = calibrate_return_error;
            }
        }
    }

    if (result == calibrate_return_ok) {
        result = calibrate_from_orientation(
                    worker_data.side_data_collected,    // Sides to calibrate
                    &worker_data);                      // Opaque data for calibration worked
    }

    // Calculate calibration values for each mag

    float sphere_x[max_mags];
    float sphere_y[max_mags];
    float sphere_z[max_mags];
    float sphere_radius[max_mags];

    // Sphere fit the data to get calibration values
    if (result == calibrate_return_ok) {
        for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) {
            if (rgCompassAvailable[cur_mag]) {
                sphere_fit_least_squares(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
                                         worker_data.calibration_counter_total[cur_mag],
                                         100, 0.0f,
                                         &sphere_x[cur_mag], &sphere_y[cur_mag], &sphere_z[cur_mag],
                                         &sphere_radius[cur_mag]);

                if (qIsNaN(sphere_x[cur_mag]) || qIsNaN(sphere_y[cur_mag]) || qIsNaN(sphere_z[cur_mag])) {
                    _emitVehicleTextMessage(QString("[cal] ERROR: NaN in sphere fit for mag %1").arg(cur_mag));
                    result = calibrate_return_error;
                }
            }
        }
    }

    // Data points are no longer needed
    for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
        free(worker_data.x[cur_mag]);
        free(worker_data.y[cur_mag]);
        free(worker_data.z[cur_mag]);
    }

    static const char* rgCompassOffsetParam[3][3] = {
        { "COMPASS_OFS_X", "COMPASS_OFS_Y", "COMPASS_OFS_Z" },
        { "COMPASS_OFS2_X", "COMPASS_OFS2_Y", "COMPASS_OFS2_Z" },
        { "COMPASS_OFS3_X", "COMPASS_OFS3_Y", "COMPASS_OFS3_Z" },
    };

    AutoPilotPlugin* plugin = _vehicle->autopilotPlugin();
    if (result == calibrate_return_ok) {
        for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) {
            if (rgCompassAvailable[cur_mag]) {
                _emitVehicleTextMessage(QString("[cal] mag #%1 off: x:%2 y:%3 z:%4").arg(cur_mag).arg(-sphere_x[cur_mag]).arg(-sphere_y[cur_mag]).arg(-sphere_z[cur_mag]));

                const char* offsetParam = rgCompassOffsetParam[cur_mag][0];
                plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_x[cur_mag]);
                offsetParam = rgCompassOffsetParam[cur_mag][1];
                plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_y[cur_mag]);
                offsetParam = rgCompassOffsetParam[cur_mag][2];
                plugin->getParameterFact(-1, offsetParam)->setRawValue(-sphere_z[cur_mag]);
            }
        }
    }

    return result;
}

CalWorkerThread::calibrate_return CalWorkerThread::mag_calibration_worker(detect_orientation_return orientation, void* data)
{
    calibrate_return result = calibrate_return_ok;

    unsigned int calibration_counter_side;

    mag_worker_data_t* worker_data = (mag_worker_data_t*)(data);

    _emitVehicleTextMessage("[cal] Rotate vehicle around the detected orientation");
    _emitVehicleTextMessage(QString("[cal] Continue rotation for %1 seconds").arg(worker_data->calibration_interval_perside_seconds));

    uint64_t calibration_deadline = QGC::groundTimeUsecs() + worker_data->calibration_interval_perside_useconds;

    unsigned int loop_interval_usecs = (worker_data->calibration_interval_perside_seconds * 1000000) / worker_data->calibration_points_perside;

    calibration_counter_side = 0;

    while (QGC::groundTimeUsecs() < calibration_deadline && calibration_counter_side < worker_data->calibration_points_perside) {
        if (_cancel) {
            result = calibrate_return_cancelled;
            break;
        }

        int prev_count[max_mags];
        bool rejected = false;

        for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
            prev_count[cur_mag] = worker_data->calibration_counter_total[cur_mag];

            if (!rgCompassAvailable[cur_mag]) {
                continue;
            }

            lastScaledImuMutex.lock();
            mavlink_scaled_imu_t copyLastScaledImu = rgLastScaledImu[cur_mag];
            lastScaledImuMutex.unlock();

#if 0
            // Check if this measurement is good to go in
            rejected = rejected || reject_sample(copyLastScaledImu.xmag, copyLastScaledImu.ymag, copyLastScaledImu.zmag,
                                                 worker_data->x[cur_mag], worker_data->y[cur_mag], worker_data->z[cur_mag],
                                                 worker_data->calibration_counter_total[cur_mag],
                                                 calibration_sides * worker_data->calibration_points_perside);
#endif

            worker_data->x[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.xmag;
            worker_data->y[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.ymag;
            worker_data->z[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.zmag;
            worker_data->calibration_counter_total[cur_mag]++;
        }

        // Keep calibration of all mags in lockstep
        if (rejected) {
            qCDebug(APMCompassCalLog) << QStringLiteral("Point rejected");

            // Reset counts, since one of the mags rejected the measurement
            for (size_t cur_mag = 0; cur_mag < max_mags; cur_mag++) {
                worker_data->calibration_counter_total[cur_mag] = prev_count[cur_mag];
            }
        } else {
            calibration_counter_side++;

            // Progress indicator for side
            _emitVehicleTextMessage(QString("[cal] %1 side calibration: progress <%2>").arg(detect_orientation_str(orientation)).arg(progress_percentage(worker_data) +
                                                                                                                                     (unsigned)((100 / calibration_sides) * ((float)calibration_counter_side / (float)worker_data->calibration_points_perside))));
        }

        usleep(loop_interval_usecs);
    }

    if (result == calibrate_return_ok) {
        _emitVehicleTextMessage(QString("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orientation)));

        worker_data->done_count++;
        _emitVehicleTextMessage(QString("[cal] progress <%1>").arg(progress_percentage(worker_data)));
    }

    return result;
}

CalWorkerThread::calibrate_return CalWorkerThread::calibrate_from_orientation(
        bool	side_data_collected[detect_orientation_side_count],
        void*	worker_data)
{
    calibrate_return result = calibrate_return_ok;

    unsigned orientation_failures = 0;

    // Rotate through all requested orientations
    while (true) {
        if (_cancel) {
            result = calibrate_return_cancelled;
            break;
        }

        unsigned int side_complete_count = 0;

        // Update the number of completed sides
        for (unsigned i = 0; i < detect_orientation_side_count; i++) {
            if (side_data_collected[i]) {
                side_complete_count++;
            }
        }

        if (side_complete_count == detect_orientation_side_count) {
            // We have completed all sides, move on
            break;
        }

        /* inform user which orientations are still needed */
        char pendingStr[256];
        pendingStr[0] = 0;

        for (unsigned int cur_orientation=0; cur_orientation<detect_orientation_side_count; cur_orientation++) {
            if (!side_data_collected[cur_orientation]) {
                strcat(pendingStr, " ");
                strcat(pendingStr, detect_orientation_str((enum detect_orientation_return)cur_orientation));
            }
        }
        _emitVehicleTextMessage(QString("[cal] pending:%1").arg(pendingStr));

        _emitVehicleTextMessage(QStringLiteral("[cal] hold vehicle still on a pending side"));
        enum detect_orientation_return orient = detect_orientation();

        if (orient == DETECT_ORIENTATION_ERROR) {
            orientation_failures++;
            _emitVehicleTextMessage(QStringLiteral("[cal] detected motion, hold still..."));
            continue;
        }

        /* inform user about already handled side */
        if (side_data_collected[orient]) {
            orientation_failures++;
            _emitVehicleTextMessage(QString("%1 side already completed").arg(detect_orientation_str(orient)));
            _emitVehicleTextMessage(QStringLiteral("rotate to a pending side"));
            continue;
        }

        _emitVehicleTextMessage(QString("[cal] %1 orientation detected").arg(detect_orientation_str(orient)));
        orientation_failures = 0;

        // Call worker routine
        result = mag_calibration_worker(orient, worker_data);
        if (result != calibrate_return_ok ) {
            break;
        }

        _emitVehicleTextMessage(QString("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orient)));

        // Note that this side is complete
        side_data_collected[orient] = true;
        usleep(200000);
    }

    return result;
}

enum CalWorkerThread::detect_orientation_return CalWorkerThread::detect_orientation(void)
{
    bool    stillDetected = false;
    quint64 stillDetectTime;

    int16_t lastX = 0;
    int16_t lastY = 0;
    int16_t lastZ = 0;

    while (true) {
        lastScaledImuMutex.lock();
        mavlink_raw_imu_t   copyLastRawImu = lastRawImu;
        lastScaledImuMutex.unlock();

        int16_t xDelta = abs(lastX - copyLastRawImu.xacc);
        int16_t yDelta = abs(lastY - copyLastRawImu.yacc);
        int16_t zDelta = abs(lastZ - copyLastRawImu.zacc);

        lastX = copyLastRawImu.xacc;
        lastY = copyLastRawImu.yacc;
        lastZ = copyLastRawImu.zacc;

        if (xDelta < 100 && yDelta < 100 && zDelta < 100) {
            if (stillDetected) {
                if (QGC::groundTimeMilliseconds() - stillDetectTime > 1000) {
                    break;
                }
            } else {
                stillDetectTime = QGC::groundTimeMilliseconds();
                stillDetected = true;
            }
        } else {
            stillDetected = false;
        }

        if (_cancel) {
            break;
        }

        // FIXME: No timeout for never detect still

        usleep(1000);
    }

    static const uint16_t rawImuOneG = 800;
    static const uint16_t rawImuNoGThreshold = 200;

    if (lastX > rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_TAIL_DOWN;        // [ g, 0, 0 ]
    }

    if (lastX < -rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_NOSE_DOWN;        // [ -g, 0, 0 ]
    }

    if (lastY > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_LEFT;        // [ 0, g, 0 ]
    }

    if (lastY < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_RIGHT;        // [ 0, -g, 0 ]
    }

    if (lastZ > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_UPSIDE_DOWN;        // [ 0, 0, g ]
    }

    if (lastZ < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) {
        return DETECT_ORIENTATION_RIGHTSIDE_UP;        // [ 0, 0, -g ]
    }

    _emitVehicleTextMessage(QStringLiteral("[cal] ERROR: invalid orientation"));

    return DETECT_ORIENTATION_ERROR;	// Can't detect orientation
}

const char* CalWorkerThread::detect_orientation_str(enum detect_orientation_return orientation)
{
    static const char* rgOrientationStrs[] = {
        "back",		// tail down
        "front",	// nose down
        "left",
        "right",
        "up",		// upside-down
        "down",		// right-side up
        "error"
    };

    return rgOrientationStrs[orientation];
}

#if 0
bool CalWorkerThread::reject_sample(float sx, float sy, float sz, float x[], float y[], float z[], unsigned count, unsigned max_count)
{
    float min_sample_dist = fabsf(5.4f * mag_sphere_radius / sqrtf(max_count)) / 3.0f;

    for (size_t i = 0; i < count; i++) {
        float dx = sx - x[i];
        float dy = sy - y[i];
        float dz = sz - z[i];
        float dist = sqrtf(dx * dx + dy * dy + dz * dz);

        qDebug() << dist << min_sample_dist;

        if (dist < min_sample_dist) {
            return true;
        }
    }

    return false;
}
#endif

int CalWorkerThread::sphere_fit_least_squares(const float x[], const float y[], const float z[],
                                              unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z,
                                              float *sphere_radius)
{

    float x_sumplain = 0.0f;
    float x_sumsq = 0.0f;
    float x_sumcube = 0.0f;

    float y_sumplain = 0.0f;
    float y_sumsq = 0.0f;
    float y_sumcube = 0.0f;

    float z_sumplain = 0.0f;
    float z_sumsq = 0.0f;
    float z_sumcube = 0.0f;

    float xy_sum = 0.0f;
    float xz_sum = 0.0f;
    float yz_sum = 0.0f;

    float x2y_sum = 0.0f;
    float x2z_sum = 0.0f;
    float y2x_sum = 0.0f;
    float y2z_sum = 0.0f;
    float z2x_sum = 0.0f;
    float z2y_sum = 0.0f;

    for (unsigned int i = 0; i < size; i++) {

        float x2 = x[i] * x[i];
        float y2 = y[i] * y[i];
        float z2 = z[i] * z[i];

        x_sumplain += x[i];
        x_sumsq += x2;
        x_sumcube += x2 * x[i];

        y_sumplain += y[i];
        y_sumsq += y2;
        y_sumcube += y2 * y[i];

        z_sumplain += z[i];
        z_sumsq += z2;
        z_sumcube += z2 * z[i];

        xy_sum += x[i] * y[i];
        xz_sum += x[i] * z[i];
        yz_sum += y[i] * z[i];

        x2y_sum += x2 * y[i];
        x2z_sum += x2 * z[i];

        y2x_sum += y2 * x[i];
        y2z_sum += y2 * z[i];

        z2x_sum += z2 * x[i];
        z2y_sum += z2 * y[i];
    }

    //
    //Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
    //
    //    P is a structure that has been computed with the data earlier.
    //    P.npoints is the number of elements; the length of X,Y,Z are identical.
    //    P's members are logically named.
    //
    //    X[n] is the x component of point n
    //    Y[n] is the y component of point n
    //    Z[n] is the z component of point n
    //
    //    A is the x coordiante of the sphere
    //    B is the y coordiante of the sphere
    //    C is the z coordiante of the sphere
    //    Rsq is the radius squared of the sphere.
    //
    //This method should converge; maybe 5-100 iterations or more.
    //
    float x_sum = x_sumplain / size;        //sum( X[n] )
    float x_sum2 = x_sumsq / size;    //sum( X[n]^2 )
    float x_sum3 = x_sumcube / size;    //sum( X[n]^3 )
    float y_sum = y_sumplain / size;        //sum( Y[n] )
    float y_sum2 = y_sumsq / size;    //sum( Y[n]^2 )
    float y_sum3 = y_sumcube / size;    //sum( Y[n]^3 )
    float z_sum = z_sumplain / size;        //sum( Z[n] )
    float z_sum2 = z_sumsq / size;    //sum( Z[n]^2 )
    float z_sum3 = z_sumcube / size;    //sum( Z[n]^3 )

    float XY = xy_sum / size;        //sum( X[n] * Y[n] )
    float XZ = xz_sum / size;        //sum( X[n] * Z[n] )
    float YZ = yz_sum / size;        //sum( Y[n] * Z[n] )
    float X2Y = x2y_sum / size;    //sum( X[n]^2 * Y[n] )
    float X2Z = x2z_sum / size;    //sum( X[n]^2 * Z[n] )
    float Y2X = y2x_sum / size;    //sum( Y[n]^2 * X[n] )
    float Y2Z = y2z_sum / size;    //sum( Y[n]^2 * Z[n] )
    float Z2X = z2x_sum / size;    //sum( Z[n]^2 * X[n] )
    float Z2Y = z2y_sum / size;    //sum( Z[n]^2 * Y[n] )

    //Reduction of multiplications
    float F0 = x_sum2 + y_sum2 + z_sum2;
    float F1 =  0.5f * F0;
    float F2 = -8.0f * (x_sum3 + Y2X + Z2X);
    float F3 = -8.0f * (X2Y + y_sum3 + Z2Y);
    float F4 = -8.0f * (X2Z + Y2Z + z_sum3);

    //Set initial conditions:
    float A = x_sum;
    float B = y_sum;
    float C = z_sum;

    //First iteration computation:
    float A2 = A * A;
    float B2 = B * B;
    float C2 = C * C;
    float QS = A2 + B2 + C2;
    float QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);

    //Set initial conditions:
    float Rsq = F0 + QB + QS;

    //First iteration computation:
    float Q0 = 0.5f * (QS - Rsq);
    float Q1 = F1 + Q0;
    float Q2 = 8.0f * (QS - Rsq + QB + F0);
    float aA, aB, aC, nA, nB, nC, dA, dB, dC;

    //Iterate N times, ignore stop condition.
    unsigned int n = 0;

#define FLT_EPSILON 1.1920929e-07F  /* 1E-5 */

    while (n < max_iterations) {
        n++;

        //Compute denominator:
        aA = Q2 + 16.0f * (A2 - 2.0f * A * x_sum + x_sum2);
        aB = Q2 + 16.0f * (B2 - 2.0f * B * y_sum + y_sum2);
        aC = Q2 + 16.0f * (C2 - 2.0f * C * z_sum + z_sum2);
        aA = (fabsf(aA) < FLT_EPSILON) ? 1.0f : aA;
        aB = (fabsf(aB) < FLT_EPSILON) ? 1.0f : aB;
        aC = (fabsf(aC) < FLT_EPSILON) ? 1.0f : aC;

        //Compute next iteration
        nA = A - ((F2 + 16.0f * (B * XY + C * XZ + x_sum * (-A2 - Q0) + A * (x_sum2 + Q1 - C * z_sum - B * y_sum))) / aA);
        nB = B - ((F3 + 16.0f * (A * XY + C * YZ + y_sum * (-B2 - Q0) + B * (y_sum2 + Q1 - A * x_sum - C * z_sum))) / aB);
        nC = C - ((F4 + 16.0f * (A * XZ + B * YZ + z_sum * (-C2 - Q0) + C * (z_sum2 + Q1 - A * x_sum - B * y_sum))) / aC);

        //Check for stop condition
        dA = (nA - A);
        dB = (nB - B);
        dC = (nC - C);

        if ((dA * dA + dB * dB + dC * dC) <= delta) { break; }

        //Compute next iteration's values
        A = nA;
        B = nB;
        C = nC;
        A2 = A * A;
        B2 = B * B;
        C2 = C * C;
        QS = A2 + B2 + C2;
        QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);
        Rsq = F0 + QB + QS;
        Q0 = 0.5f * (QS - Rsq);
        Q1 = F1 + Q0;
        Q2 = 8.0f * (QS - Rsq + QB + F0);
    }

    *sphere_x = A;
    *sphere_y = B;
    *sphere_z = C;
    *sphere_radius = sqrtf(Rsq);

    return 0;
}

APMCompassCal::APMCompassCal(void)
    : _vehicle(NULL)
    , _calWorkerThread(NULL)
{

}

APMCompassCal::~APMCompassCal()
{

}

void APMCompassCal::setVehicle(Vehicle* vehicle)
{
    if (!vehicle) {
        qWarning() << "vehicle == NULL";
    }

    _vehicle = vehicle;
}

void APMCompassCal::startCalibration(void)
{
    _setSensorTransmissionSpeed(true /* fast */);
    connect (_vehicle, &Vehicle::mavlinkRawImu,     this, &APMCompassCal::_handleMavlinkRawImu);
    connect (_vehicle, &Vehicle::mavlinkScaledImu2, this, &APMCompassCal::_handleMavlinkScaledImu2);
    connect (_vehicle, &Vehicle::mavlinkScaledImu3, this, &APMCompassCal::_handleMavlinkScaledImu3);

    // Simulate a start message
    _emitVehicleTextMessage("[cal] calibration started: mag");

    _calWorkerThread = new CalWorkerThread(_vehicle, this);
    connect(_calWorkerThread, &CalWorkerThread::vehicleTextMessage, this, &APMCompassCal::vehicleTextMessage);

    static const char* rgCompassOffsetParam[3][4] = {
        { "COMPASS_OFS_X", "COMPASS_OFS_Y", "COMPASS_OFS_Z", "COMPASS_DEV_ID" },
        { "COMPASS_OFS2_X", "COMPASS_OFS2_Y", "COMPASS_OFS2_Z", "COMPASS_DEV_ID2" },
        { "COMPASS_OFS3_X", "COMPASS_OFS3_Y", "COMPASS_OFS3_Z", "COMPASS_DEV_ID3" },
    };

    // Clear the offset parameters so we get raw data
    AutoPilotPlugin* plugin = _vehicle->autopilotPlugin();
    for (int i=0; i<3; i++) {
        _calWorkerThread->rgCompassAvailable[i] = true;

        const char* deviceIdParam = rgCompassOffsetParam[i][3];
        if (plugin->parameterExists(-1, deviceIdParam)) {
            if (plugin->getParameterFact(-1, deviceIdParam)->rawValue().toInt() > 0) {
                for (int j=0; j<3; j++) {
                    const char* offsetParam = rgCompassOffsetParam[i][j];
                    if (plugin->parameterExists(-1, offsetParam)) {
                        plugin->getParameterFact(-1, offsetParam)->setRawValue(0.0);
                    } else {
                        _calWorkerThread->rgCompassAvailable[i] = false;
                    }
                }
            } else {
                _calWorkerThread->rgCompassAvailable[i] = false;
            }
        } else {
            _calWorkerThread->rgCompassAvailable[i] = false;
        }

        qCDebug(APMCompassCalLog) << QStringLiteral("Compass %1 available: %2").arg(i).arg(_calWorkerThread->rgCompassAvailable[i]);
    }

    _calWorkerThread->start();
}

void APMCompassCal::cancelCalibration(void)
{
    _stopCalibration();

    // Simulate a cancelled message
    _emitVehicleTextMessage("[cal] calibration cancelled");
}

void APMCompassCal::_handleMavlinkRawImu(mavlink_message_t message)
{
    _calWorkerThread->lastScaledImuMutex.lock();
    mavlink_msg_raw_imu_decode(&message, &_calWorkerThread->lastRawImu);
    _calWorkerThread->rgLastScaledImu[0].xacc = _calWorkerThread->lastRawImu.xacc;
    _calWorkerThread->rgLastScaledImu[0].yacc = _calWorkerThread->lastRawImu.yacc;
    _calWorkerThread->rgLastScaledImu[0].zacc = _calWorkerThread->lastRawImu.zacc;
    _calWorkerThread->rgLastScaledImu[0].xgyro = _calWorkerThread->lastRawImu.xgyro;
    _calWorkerThread->rgLastScaledImu[0].ygyro = _calWorkerThread->lastRawImu.ygyro;
    _calWorkerThread->rgLastScaledImu[0].zgyro = _calWorkerThread->lastRawImu.zgyro;
    _calWorkerThread->rgLastScaledImu[0].xmag = _calWorkerThread->lastRawImu.xmag;
    _calWorkerThread->rgLastScaledImu[0].ymag = _calWorkerThread->lastRawImu.ymag;
    _calWorkerThread->rgLastScaledImu[0].zmag = _calWorkerThread->lastRawImu.zmag;
    _calWorkerThread->lastScaledImuMutex.unlock();
}

void APMCompassCal::_handleMavlinkScaledImu2(mavlink_message_t message)
{
    _calWorkerThread->lastScaledImuMutex.lock();
    mavlink_msg_scaled_imu2_decode(&message, (mavlink_scaled_imu2_t*)&_calWorkerThread->rgLastScaledImu[1]);
    qDebug() << "IMU2" << _calWorkerThread->rgLastScaledImu[1].xmag << _calWorkerThread->rgLastScaledImu[1].ymag << _calWorkerThread->rgLastScaledImu[1].zmag;
    _calWorkerThread->lastScaledImuMutex.unlock();
}

void APMCompassCal::_handleMavlinkScaledImu3(mavlink_message_t message)
{
    _calWorkerThread->lastScaledImuMutex.lock();
    mavlink_msg_scaled_imu3_decode(&message, (mavlink_scaled_imu3_t*)&_calWorkerThread->rgLastScaledImu[2]);
    _calWorkerThread->lastScaledImuMutex.unlock();
}

void APMCompassCal::_setSensorTransmissionSpeed(bool fast)
{
    _vehicle->requestDataStream(MAV_DATA_STREAM_RAW_SENSORS, fast ? 10 : 2);
}

void APMCompassCal::_stopCalibration(void)
{
    _calWorkerThread->cancel();
    disconnect (_vehicle, &Vehicle::mavlinkRawImu,      this, &APMCompassCal::_handleMavlinkRawImu);
    disconnect (_vehicle, &Vehicle::mavlinkScaledImu2,  this, &APMCompassCal::_handleMavlinkScaledImu2);
    disconnect (_vehicle, &Vehicle::mavlinkScaledImu3,  this, &APMCompassCal::_handleMavlinkScaledImu3);
    _setSensorTransmissionSpeed(false /* fast */);
}

void APMCompassCal::_emitVehicleTextMessage(const QString& message)
{
    emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message);
}