LinearProgramming.java 4.73 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
13

Valentin Platzgummer's avatar
Valentin Platzgummer committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
package com.google.ortools.examples;

import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/**
 * Linear programming example that shows how to use the API.
 *
 */

public class LinearProgramming {
  static {
    System.loadLibrary("jniortools");
  }

  private static void runLinearProgrammingExample(String solverType, boolean printModel) {
32
    MPSolver solver = MPSolver.createSolver("IntegerProgramming", solverType);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    if (solver == null) {
      System.out.println("Could not create solver " + solverType);
      return;
    }
    double infinity = java.lang.Double.POSITIVE_INFINITY;
    // x1, x2 and x3 are continuous non-negative variables.
    MPVariable x1 = solver.makeNumVar(0.0, infinity, "x1");
    MPVariable x2 = solver.makeNumVar(0.0, infinity, "x2");
    MPVariable x3 = solver.makeNumVar(0.0, infinity, "x3");

    // Maximize 10 * x1 + 6 * x2 + 4 * x3.
    MPObjective objective = solver.objective();
    objective.setCoefficient(x1, 10);
    objective.setCoefficient(x2, 6);
    objective.setCoefficient(x3, 4);
    objective.setMaximization();

    // x1 + x2 + x3 <= 100.
    MPConstraint c0 = solver.makeConstraint(-infinity, 100.0);
    c0.setCoefficient(x1, 1);
    c0.setCoefficient(x2, 1);
    c0.setCoefficient(x3, 1);

    // 10 * x1 + 4 * x2 + 5 * x3 <= 600.
    MPConstraint c1 = solver.makeConstraint(-infinity, 600.0);
    c1.setCoefficient(x1, 10);
    c1.setCoefficient(x2, 4);
    c1.setCoefficient(x3, 5);

    // 2 * x1 + 2 * x2 + 6 * x3 <= 300.
    MPConstraint c2 = solver.makeConstraint(-infinity, 300.0);
    c2.setCoefficient(x1, 2);
    c2.setCoefficient(x2, 2);
    c2.setCoefficient(x3, 6);

    System.out.println("Number of variables = " + solver.numVariables());
    System.out.println("Number of constraints = " + solver.numConstraints());

    if (printModel) {
      String model = solver.exportModelAsLpFormat();
      System.out.println(model);
    }

    final MPSolver.ResultStatus resultStatus = solver.solve();

    // Check that the problem has an optimal solution.
    if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
      System.err.println("The problem does not have an optimal solution!");
      return;
    }

    // Verify that the solution satisfies all constraints (when using solvers
    // others than GLOP_LINEAR_PROGRAMMING, this is highly recommended!).
    if (!solver.verifySolution(/*tolerance=*/1e-7, /* log_errors= */ true)) {
      System.err.println("The solution returned by the solver violated the"
          + " problem constraints by at least 1e-7");
      return;
    }

    System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");

    // The objective value of the solution.
    System.out.println("Optimal objective value = " + solver.objective().value());

    // The value of each variable in the solution.
    System.out.println("x1 = " + x1.solutionValue());
    System.out.println("x2 = " + x2.solutionValue());
    System.out.println("x3 = " + x3.solutionValue());

    final double[] activities = solver.computeConstraintActivities();

    System.out.println("Advanced usage:");
    System.out.println("Problem solved in " + solver.iterations() + " iterations");
    System.out.println("x1: reduced cost = " + x1.reducedCost());
    System.out.println("x2: reduced cost = " + x2.reducedCost());
    System.out.println("x3: reduced cost = " + x3.reducedCost());
    System.out.println("c0: dual value = " + c0.dualValue());
    System.out.println("    activity = " + activities[c0.index()]);
    System.out.println("c1: dual value = " + c1.dualValue());
    System.out.println("    activity = " + activities[c1.index()]);
    System.out.println("c2: dual value = " + c2.dualValue());
    System.out.println("    activity = " + activities[c2.index()]);
  }

  public static void main(String[] args) throws Exception {
    System.out.println("---- Linear programming example with GLOP (recommended) ----");
119
    runLinearProgrammingExample("GLOP", true);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
120
    System.out.println("---- Linear programming example with CLP ----");
121
    runLinearProgrammingExample("CLP", false);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
122 123
  }
}