UmfPackSupport.h 14.3 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H

namespace Eigen { 

/* TODO extract L, extract U, compute det, etc... */

// generic double/complex<double> wrapper functions:

inline void umfpack_free_numeric(void **Numeric, double)
{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }

inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }

inline void umfpack_free_symbolic(void **Symbolic, double)
{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }

inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }

inline int umfpack_symbolic(int n_row,int n_col,
                            const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
  return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
}

inline int umfpack_symbolic(int n_row,int n_col,
                            const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
  return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
}

inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
                            void *Symbolic, void **Numeric,
                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
  return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
}

inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
                            void *Symbolic, void **Numeric,
                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
  return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
}

inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
                          double X[], const double B[], void *Numeric,
                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
  return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
}

inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
                          std::complex<double> X[], const std::complex<double> B[], void *Numeric,
                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
  return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
}

inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
{
  return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}

inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
{
  return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}

inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
                               int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
{
  return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
}

inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
                               int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
{
  double& lx0_real = numext::real_ref(Lx[0]);
  double& ux0_real = numext::real_ref(Ux[0]);
  double& dx0_real = numext::real_ref(Dx[0]);
  return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
                                Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
}

inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
  return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
}

inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
  double& mx_real = numext::real_ref(*Mx);
  return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
}

/** \ingroup UmfPackSupport_Module
  * \brief A sparse LU factorization and solver based on UmfPack
  *
  * This class allows to solve for A.X = B sparse linear problems via a LU factorization
  * using the UmfPack library. The sparse matrix A must be squared and full rank.
  * The vectors or matrices X and B can be either dense or sparse.
  *
  * \warning The input matrix A should be in a \b compressed and \b column-major form.
  * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType>
class UmfPackLU : internal::noncopyable
{
  public:
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef SparseMatrix<Scalar> LUMatrixType;
    typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;

  public:

    UmfPackLU() { init(); }

    UmfPackLU(const MatrixType& matrix)
    {
      init();
      compute(matrix);
    }

    ~UmfPackLU()
    {
      if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
      if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
    }

    inline Index rows() const { return m_copyMatrix.rows(); }
    inline Index cols() const { return m_copyMatrix.cols(); }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }

    inline const LUMatrixType& matrixL() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_l;
    }

    inline const LUMatrixType& matrixU() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_u;
    }

    inline const IntColVectorType& permutationP() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_p;
    }

    inline const IntRowVectorType& permutationQ() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_q;
    }

    /** Computes the sparse Cholesky decomposition of \a matrix 
     *  Note that the matrix should be column-major, and in compressed format for best performance.
     *  \sa SparseMatrix::makeCompressed().
     */
    void compute(const MatrixType& matrix)
    {
      analyzePattern(matrix);
      factorize(matrix);
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
      eigen_assert(rows()==b.rows()
                && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
      eigen_assert(rows()==b.rows()
                && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
      return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
    }

    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      *
      * \sa factorize(), compute()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      if(m_symbolic)
        umfpack_free_symbolic(&m_symbolic,Scalar());
      if(m_numeric)
        umfpack_free_numeric(&m_numeric,Scalar());
      
      grapInput(matrix);

      int errorCode = 0;
      errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
                                   &m_symbolic, 0, 0);

      m_isInitialized = true;
      m_info = errorCode ? InvalidInput : Success;
      m_analysisIsOk = true;
      m_factorizationIsOk = false;
    }

    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
      *
      * \sa analyzePattern(), compute()
      */
    void factorize(const MatrixType& matrix)
    {
      eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
      if(m_numeric)
        umfpack_free_numeric(&m_numeric,Scalar());

      grapInput(matrix);

      int errorCode;
      errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
                                  m_symbolic, &m_numeric, 0, 0);

      m_info = errorCode ? NumericalIssue : Success;
      m_factorizationIsOk = true;
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal */
    template<typename BDerived,typename XDerived>
    bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
    #endif

    Scalar determinant() const;

    void extractData() const;

  protected:


    void init()
    {
      m_info = InvalidInput;
      m_isInitialized = false;
      m_numeric = 0;
      m_symbolic = 0;
      m_outerIndexPtr = 0;
      m_innerIndexPtr = 0;
      m_valuePtr      = 0;
    }
    
    void grapInput(const MatrixType& mat)
    {
      m_copyMatrix.resize(mat.rows(), mat.cols());
      if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
      {
        // non supported input -> copy
        m_copyMatrix = mat;
        m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
        m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
        m_valuePtr      = m_copyMatrix.valuePtr();
      }
      else
      {
        m_outerIndexPtr = mat.outerIndexPtr();
        m_innerIndexPtr = mat.innerIndexPtr();
        m_valuePtr      = mat.valuePtr();
      }
    }

    // cached data to reduce reallocation, etc.
    mutable LUMatrixType m_l;
    mutable LUMatrixType m_u;
    mutable IntColVectorType m_p;
    mutable IntRowVectorType m_q;

    UmfpackMatrixType m_copyMatrix;
    const Scalar* m_valuePtr;
    const int* m_outerIndexPtr;
    const int* m_innerIndexPtr;
    void* m_numeric;
    void* m_symbolic;

    mutable ComputationInfo m_info;
    bool m_isInitialized;
    int m_factorizationIsOk;
    int m_analysisIsOk;
    mutable bool m_extractedDataAreDirty;
    
  private:
    UmfPackLU(UmfPackLU& ) { }
};


template<typename MatrixType>
void UmfPackLU<MatrixType>::extractData() const
{
  if (m_extractedDataAreDirty)
  {
    // get size of the data
    int lnz, unz, rows, cols, nz_udiag;
    umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());

    // allocate data
    m_l.resize(rows,(std::min)(rows,cols));
    m_l.resizeNonZeros(lnz);

    m_u.resize((std::min)(rows,cols),cols);
    m_u.resizeNonZeros(unz);

    m_p.resize(rows);
    m_q.resize(cols);

    // extract
    umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
                        m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
                        m_p.data(), m_q.data(), 0, 0, 0, m_numeric);

    m_extractedDataAreDirty = false;
  }
}

template<typename MatrixType>
typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
{
  Scalar det;
  umfpack_get_determinant(&det, 0, m_numeric, 0);
  return det;
}

template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
{
  const int rhsCols = b.cols();
  eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
  eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
  eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
  
  int errorCode;
  for (int j=0; j<rhsCols; ++j)
  {
    errorCode = umfpack_solve(UMFPACK_A,
        m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
        &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
    if (errorCode!=0)
      return false;
  }

  return true;
}


namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
  : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
{
  typedef UmfPackLU<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

template<typename _MatrixType, typename Rhs>
struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
  : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
{
  typedef UmfPackLU<_MatrixType> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_UMFPACKSUPPORT_H