SVDBase.h 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SVDBASE_H
#define EIGEN_SVDBASE_H

namespace Eigen {
/** \ingroup SVD_Module
 *
 *
 * \class SVDBase
 *
 * \brief Base class of SVD algorithms
 *
 * \tparam Derived the type of the actual SVD decomposition
 *
 * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
 *   \f[ A = U S V^* \f]
 * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
 * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
 * and right \em singular \em vectors of \a A respectively.
 *
 * Singular values are always sorted in decreasing order.
 *
 * 
 * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
 * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
 * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
 * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
 *  
 * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
 * terminate in finite (and reasonable) time.
 * \sa class BDCSVD, class JacobiSVD
 */
template<typename Derived>
class SVDBase
{

public:
  typedef typename internal::traits<Derived>::MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  typedef typename MatrixType::StorageIndex StorageIndex;
  typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
    MatrixOptions = MatrixType::Options
  };

  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
  typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
  
  Derived& derived() { return *static_cast<Derived*>(this); }
  const Derived& derived() const { return *static_cast<const Derived*>(this); }

  /** \returns the \a U matrix.
   *
   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
   * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
   *
   * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
   *
   * This method asserts that you asked for \a U to be computed.
   */
  const MatrixUType& matrixU() const
  {
    eigen_assert(m_isInitialized && "SVD is not initialized.");
    eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
    return m_matrixU;
  }

  /** \returns the \a V matrix.
   *
   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
   * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
   *
   * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
   *
   * This method asserts that you asked for \a V to be computed.
   */
  const MatrixVType& matrixV() const
  {
    eigen_assert(m_isInitialized && "SVD is not initialized.");
    eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
    return m_matrixV;
  }

  /** \returns the vector of singular values.
   *
   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
   * returned vector has size \a m.  Singular values are always sorted in decreasing order.
   */
  const SingularValuesType& singularValues() const
  {
    eigen_assert(m_isInitialized && "SVD is not initialized.");
    return m_singularValues;
  }

  /** \returns the number of singular values that are not exactly 0 */
  Index nonzeroSingularValues() const
  {
    eigen_assert(m_isInitialized && "SVD is not initialized.");
    return m_nonzeroSingularValues;
  }
  
  /** \returns the rank of the matrix of which \c *this is the SVD.
    *
    * \note This method has to determine which singular values should be considered nonzero.
    *       For that, it uses the threshold value that you can control by calling
    *       setThreshold(const RealScalar&).
    */
  inline Index rank() const
  {
    using std::abs;
    eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    if(m_singularValues.size()==0) return 0;
    RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
    Index i = m_nonzeroSingularValues-1;
    while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
    return i+1;
  }
  
  /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
    * which need to determine when singular values are to be considered nonzero.
    * This is not used for the SVD decomposition itself.
    *
    * When it needs to get the threshold value, Eigen calls threshold().
    * The default is \c NumTraits<Scalar>::epsilon()
    *
    * \param threshold The new value to use as the threshold.
    *
    * A singular value will be considered nonzero if its value is strictly greater than
    *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
    *
    * If you want to come back to the default behavior, call setThreshold(Default_t)
    */
  Derived& setThreshold(const RealScalar& threshold)
  {
    m_usePrescribedThreshold = true;
    m_prescribedThreshold = threshold;
    return derived();
  }

  /** Allows to come back to the default behavior, letting Eigen use its default formula for
    * determining the threshold.
    *
    * You should pass the special object Eigen::Default as parameter here.
    * \code svd.setThreshold(Eigen::Default); \endcode
    *
    * See the documentation of setThreshold(const RealScalar&).
    */
  Derived& setThreshold(Default_t)
  {
    m_usePrescribedThreshold = false;
    return derived();
  }

  /** Returns the threshold that will be used by certain methods such as rank().
    *
    * See the documentation of setThreshold(const RealScalar&).
    */
  RealScalar threshold() const
  {
    eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    // this temporary is needed to workaround a MSVC issue
    Index diagSize = (std::max<Index>)(1,m_diagSize);
    return m_usePrescribedThreshold ? m_prescribedThreshold
                                    : diagSize*NumTraits<Scalar>::epsilon();
  }

  /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
  inline bool computeU() const { return m_computeFullU || m_computeThinU; }
  /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
  inline bool computeV() const { return m_computeFullV || m_computeThinV; }

  inline Index rows() const { return m_rows; }
  inline Index cols() const { return m_cols; }
  
  /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
    *
    * \param b the right-hand-side of the equation to solve.
    *
    * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
    *
    * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
    * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
    */
  template<typename Rhs>
  inline const Solve<Derived, Rhs>
  solve(const MatrixBase<Rhs>& b) const
  {
    eigen_assert(m_isInitialized && "SVD is not initialized.");
    eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
    return Solve<Derived, Rhs>(derived(), b.derived());
  }
  
  #ifndef EIGEN_PARSED_BY_DOXYGEN
  template<typename RhsType, typename DstType>
  EIGEN_DEVICE_FUNC
  void _solve_impl(const RhsType &rhs, DstType &dst) const;
  #endif

protected:
  
  static void check_template_parameters()
  {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
  }
  
  // return true if already allocated
  bool allocate(Index rows, Index cols, unsigned int computationOptions) ;

  MatrixUType m_matrixU;
  MatrixVType m_matrixV;
  SingularValuesType m_singularValues;
  bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
  bool m_computeFullU, m_computeThinU;
  bool m_computeFullV, m_computeThinV;
  unsigned int m_computationOptions;
  Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
  RealScalar m_prescribedThreshold;

  /** \brief Default Constructor.
   *
   * Default constructor of SVDBase
   */
  SVDBase()
    : m_isInitialized(false),
      m_isAllocated(false),
      m_usePrescribedThreshold(false),
      m_computationOptions(0),
      m_rows(-1), m_cols(-1), m_diagSize(0)
  {
    check_template_parameters();
  }


};

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
template<typename RhsType, typename DstType>
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
  eigen_assert(rhs.rows() == rows());

  // A = U S V^*
  // So A^{-1} = V S^{-1} U^*

  Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
  Index l_rank = rank();
  tmp.noalias() =  m_matrixU.leftCols(l_rank).adjoint() * rhs;
  tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
  dst = m_matrixV.leftCols(l_rank) * tmp;
}
#endif

template<typename MatrixType>
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  eigen_assert(rows >= 0 && cols >= 0);

  if (m_isAllocated &&
      rows == m_rows &&
      cols == m_cols &&
      computationOptions == m_computationOptions)
  {
    return true;
  }

  m_rows = rows;
  m_cols = cols;
  m_isInitialized = false;
  m_isAllocated = true;
  m_computationOptions = computationOptions;
  m_computeFullU = (computationOptions & ComputeFullU) != 0;
  m_computeThinU = (computationOptions & ComputeThinU) != 0;
  m_computeFullV = (computationOptions & ComputeFullV) != 0;
  m_computeThinV = (computationOptions & ComputeThinV) != 0;
  eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
  eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
	       "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");

  m_diagSize = (std::min)(m_rows, m_cols);
  m_singularValues.resize(m_diagSize);
  if(RowsAtCompileTime==Dynamic)
    m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
  if(ColsAtCompileTime==Dynamic)
    m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);

  return false;
}

}// end namespace

#endif // EIGEN_SVDBASE_H