InverseImpl.h.orig 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_INVERSE_IMPL_H
#define EIGEN_INVERSE_IMPL_H

namespace Eigen { 

namespace internal {

/**********************************
*** General case implementation ***
**********************************/

template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
  EIGEN_DEVICE_FUNC
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    result = matrix.partialPivLu().inverse();
  }
};

template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };

/****************************
*** Size 1 implementation ***
****************************/

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
  EIGEN_DEVICE_FUNC
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename MatrixType::Scalar Scalar;
    internal::evaluator<MatrixType> matrixEval(matrix);
    result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
  EIGEN_DEVICE_FUNC
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& result,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
    using std::abs;
    determinant = matrix.coeff(0,0);
    invertible = abs(determinant) > absDeterminantThreshold;
    if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
  }
};

/****************************
*** Size 2 implementation ***
****************************/

template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC 
inline void compute_inverse_size2_helper(
    const MatrixType& matrix, const typename ResultType::Scalar& invdet,
    ResultType& result)
{
  result.coeffRef(0,0) =  matrix.coeff(1,1) * invdet;
  result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
  result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
  result.coeffRef(1,1) =  matrix.coeff(0,0) * invdet;
}

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
  EIGEN_DEVICE_FUNC
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename ResultType::Scalar Scalar;
    const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
    compute_inverse_size2_helper(matrix, invdet, result);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
  EIGEN_DEVICE_FUNC
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
    using std::abs;
    typedef typename ResultType::Scalar Scalar;
    determinant = matrix.determinant();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(!invertible) return;
    const Scalar invdet = Scalar(1) / determinant;
    compute_inverse_size2_helper(matrix, invdet, inverse);
  }
};

/****************************
*** Size 3 implementation ***
****************************/

template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC 
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
  enum {
    i1 = (i+1) % 3,
    i2 = (i+2) % 3,
    j1 = (j+1) % 3,
    j2 = (j+2) % 3
  };
  return m.coeff(i1, j1) * m.coeff(i2, j2)
       - m.coeff(i1, j2) * m.coeff(i2, j1);
}

template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC
inline void compute_inverse_size3_helper(
    const MatrixType& matrix,
    const typename ResultType::Scalar& invdet,
    const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
    ResultType& result)
{
  result.row(0) = cofactors_col0 * invdet;
  result.coeffRef(1,0) =  cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
  result.coeffRef(1,1) =  cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
  result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
  result.coeffRef(2,0) =  cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
  result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
  result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
}

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
  EIGEN_DEVICE_FUNC
  static inline void run(const MatrixType& matrix, ResultType& result)
  {
    typedef typename ResultType::Scalar Scalar;
    Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
    const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
    const Scalar invdet = Scalar(1) / det;
    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
  EIGEN_DEVICE_FUNC
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
    using std::abs;
    typedef typename ResultType::Scalar Scalar;
    Matrix<Scalar,3,1> cofactors_col0;
    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
    determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(!invertible) return;
    const Scalar invdet = Scalar(1) / determinant;
    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
  }
};

/****************************
*** Size 4 implementation ***
****************************/

template<typename Derived>
EIGEN_DEVICE_FUNC 
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
  return matrix.coeff(i1,j1)
         * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
}

template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC 
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
  enum {
    i1 = (i+1) % 4,
    i2 = (i+2) % 4,
    i3 = (i+3) % 4,
    j1 = (j+1) % 4,
    j2 = (j+2) % 4,
    j3 = (j+3) % 4
  };
  return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
       + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
       + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
}

template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
  EIGEN_DEVICE_FUNC
  static void run(const MatrixType& matrix, ResultType& result)
  {
    result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix);
    result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
    result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix);
    result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
    result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix);
    result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
    result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix);
    result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
    result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
    result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix);
    result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
    result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix);
    result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
    result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix);
    result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
    result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix);
    result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
  }
};

template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 4>
 : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
                            MatrixType, ResultType>
{
};

template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
  EIGEN_DEVICE_FUNC
  static inline void run(
    const MatrixType& matrix,
    const typename MatrixType::RealScalar& absDeterminantThreshold,
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible
  )
  {
    using std::abs;
    determinant = matrix.determinant();
    invertible = abs(determinant) > absDeterminantThreshold;
    if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
  }
};

/*************************
*** MatrixBase methods ***
*************************/

} // end namespace internal

namespace internal {

// Specialization for "dense = dense_xpr.inverse()"
template<typename DstXprType, typename XprType>
struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
{
  typedef Inverse<XprType> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);
    
    const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
    EIGEN_ONLY_USED_FOR_DEBUG(Size);
    eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
              && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");

    typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type  ActualXprType;
    typedef typename internal::remove_all<ActualXprType>::type                        ActualXprTypeCleanded;
    
    ActualXprType actual_xpr(src.nestedExpression());
    
    compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
  }
};

  
} // end namespace internal

/** \lu_module
  *
  * \returns the matrix inverse of this matrix.
  *
  * For small fixed sizes up to 4x4, this method uses cofactors.
  * In the general case, this method uses class PartialPivLU.
  *
  * \note This matrix must be invertible, otherwise the result is undefined. If you need an
  * invertibility check, do the following:
  * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
  * \li for the general case, use class FullPivLU.
  *
  * Example: \include MatrixBase_inverse.cpp
  * Output: \verbinclude MatrixBase_inverse.out
  *
  * \sa computeInverseAndDetWithCheck()
  */
template<typename Derived>
inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
{
  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
  eigen_assert(rows() == cols());
  return Inverse<Derived>(derived());
}

/** \lu_module
  *
  * Computation of matrix inverse and determinant, with invertibility check.
  *
  * This is only for fixed-size square matrices of size up to 4x4.
  *
  * \param inverse Reference to the matrix in which to store the inverse.
  * \param determinant Reference to the variable in which to store the determinant.
  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
  *                                The matrix will be declared invertible if the absolute value of its
  *                                determinant is greater than this threshold.
  *
  * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
  * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
  *
  * \sa inverse(), computeInverseWithCheck()
  */
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
    ResultType& inverse,
    typename ResultType::Scalar& determinant,
    bool& invertible,
    const RealScalar& absDeterminantThreshold
  ) const
{
  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
  eigen_assert(rows() == cols());
  // for 2x2, it's worth giving a chance to avoid evaluating.
  // for larger sizes, evaluating has negligible cost and limits code size.
  typedef typename internal::conditional<
    RowsAtCompileTime == 2,
    typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
    PlainObject
  >::type MatrixType;
  internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
    (derived(), absDeterminantThreshold, inverse, determinant, invertible);
}

/** \lu_module
  *
  * Computation of matrix inverse, with invertibility check.
  *
  * This is only for fixed-size square matrices of size up to 4x4.
  *
  * \param inverse Reference to the matrix in which to store the inverse.
  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
  *                                The matrix will be declared invertible if the absolute value of its
  *                                determinant is greater than this threshold.
  *
  * Example: \include MatrixBase_computeInverseWithCheck.cpp
  * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
  *
  * \sa inverse(), computeInverseAndDetWithCheck()
  */
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseWithCheck(
    ResultType& inverse,
    bool& invertible,
    const RealScalar& absDeterminantThreshold
  ) const
{
  Scalar determinant;
  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
  eigen_assert(rows() == cols());
  computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
}

} // end namespace Eigen

#endif // EIGEN_INVERSE_IMPL_H