qwt_spline.cpp 8.47 KB
Newer Older
pixhawk's avatar
pixhawk committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_spline.h"
#include "qwt_math.h"
#include "qwt_array.h"

class QwtSpline::PrivateData
{
public:
    PrivateData():
        splineType(QwtSpline::Natural)
    {
    }

    QwtSpline::SplineType splineType;

    // coefficient vectors
    QwtArray<double> a;
    QwtArray<double> b;
    QwtArray<double> c;

    // control points
#if QT_VERSION < 0x040000
    QwtArray<QwtDoublePoint> points;
#else
    QPolygonF points;
#endif
};

#if QT_VERSION < 0x040000
static int lookup(double x, const QwtArray<QwtDoublePoint> &values)
#else
static int lookup(double x, const QPolygonF &values)
#endif
{
#if 0
//qLowerBiund/qHigherBound ???
#endif
    int i1;
    const int size = (int)values.size();
    
    if (x <= values[0].x())
       i1 = 0;
    else if (x >= values[size - 2].x())
       i1 = size - 2;
    else
    {
        i1 = 0;
        int i2 = size - 2;
        int i3 = 0;

        while ( i2 - i1 > 1 )
        {
            i3 = i1 + ((i2 - i1) >> 1);

            if (values[i3].x() > x)
               i2 = i3;
            else
               i1 = i3;
        }
    }
    return i1;
}

//! Constructor
QwtSpline::QwtSpline()
{
    d_data = new PrivateData;
}

QwtSpline::QwtSpline(const QwtSpline& other)
{
    d_data = new PrivateData(*other.d_data);
}

QwtSpline &QwtSpline::operator=( const QwtSpline &other)
{
    *d_data = *other.d_data;
    return *this;
}

//! Destructor
QwtSpline::~QwtSpline()
{
    delete d_data;
}

void QwtSpline::setSplineType(SplineType splineType)
{
    d_data->splineType = splineType;
}

QwtSpline::SplineType QwtSpline::splineType() const
{
    return d_data->splineType;
}

//! Determine the function table index corresponding to a value x

/*!
  \brief Calculate the spline coefficients

  Depending on the value of \a periodic, this function
  will determine the coefficients for a natural or a periodic
  spline and store them internally. 
  
  \param x
  \param y points
  \param size number of points
  \param periodic if true, calculate periodic spline
  \return true if successful
  \warning The sequence of x (but not y) values has to be strictly monotone
           increasing, which means <code>x[0] < x[1] < .... < x[n-1]</code>.
       If this is not the case, the function will return false
*/
#if QT_VERSION < 0x040000
bool QwtSpline::setPoints(const QwtArray<QwtDoublePoint>& points)
#else
bool QwtSpline::setPoints(const QPolygonF& points)
#endif
{
    const int size = points.size();
    if (size <= 2) 
    {
        reset();
        return false;
    }

#if QT_VERSION < 0x040000
    d_data->points = points.copy(); // Qt3: deep copy
#else
    d_data->points = points;
#endif
    
    d_data->a.resize(size-1);
    d_data->b.resize(size-1);
    d_data->c.resize(size-1);

    bool ok;
    if ( d_data->splineType == Periodic )
        ok = buildPeriodicSpline(points);
    else
        ok = buildNaturalSpline(points);

    if (!ok) 
        reset();

    return ok;
}

/*!
   Return points passed by setPoints
*/
#if QT_VERSION < 0x040000
QwtArray<QwtDoublePoint> QwtSpline::points() const
#else
QPolygonF QwtSpline::points() const
#endif
{
    return d_data->points;
}


//! Free allocated memory and set size to 0
void QwtSpline::reset()
{
    d_data->a.resize(0);
    d_data->b.resize(0);
    d_data->c.resize(0);
    d_data->points.resize(0);
}

//! True if valid
bool QwtSpline::isValid() const
{
    return d_data->a.size() > 0;
}

/*!
  Calculate the interpolated function value corresponding 
  to a given argument x.
*/
double QwtSpline::value(double x) const
{
    if (d_data->a.size() == 0)
        return 0.0;

    const int i = lookup(x, d_data->points);

    const double delta = x - d_data->points[i].x();
    return( ( ( ( d_data->a[i] * delta) + d_data->b[i] ) 
        * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
}

/*!
  \brief Determines the coefficients for a natural spline
  \return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildNaturalSpline(const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildNaturalSpline(const QPolygonF &points)
#endif
{
    int i;
    
#if QT_VERSION < 0x040000
    const QwtDoublePoint *p = points.data();
#else
    const QPointF *p = points.data();
#endif
    const int size = points.size();

    double *a = d_data->a.data();
    double *b = d_data->b.data();
    double *c = d_data->c.data();

    //  set up tridiagonal equation system; use coefficient
    //  vectors as temporary buffers
    QwtArray<double> h(size-1);
    for (i = 0; i < size - 1; i++) 
    {
        h[i] = p[i+1].x() - p[i].x();
        if (h[i] <= 0)
            return false;
    }
    
    QwtArray<double> d(size-1);
    double dy1 = (p[1].y() - p[0].y()) / h[0];
    for (i = 1; i < size - 1; i++)
    {
        b[i] = c[i] = h[i];
        a[i] = 2.0 * (h[i-1] + h[i]);

        const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
        d[i] = 6.0 * ( dy1 - dy2);
        dy1 = dy2;
    }

    //
    // solve it
    //
    
    // L-U Factorization
    for(i = 1; i < size - 2;i++)
    {
        c[i] /= a[i];
        a[i+1] -= b[i] * c[i]; 
    }

    // forward elimination
    QwtArray<double> s(size);
    s[1] = d[1];
    for ( i = 2; i < size - 1; i++)
       s[i] = d[i] - c[i-1] * s[i-1];
    
    // backward elimination
    s[size - 2] = - s[size - 2] / a[size - 2];
    for (i = size -3; i > 0; i--)
       s[i] = - (s[i] + b[i] * s[i+1]) / a[i];
    s[size - 1] = s[0] = 0.0;

    //
    // Finally, determine the spline coefficients
    //
    for (i = 0; i < size - 1; i++)
    {
        a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
        b[i] = 0.5 * s[i];
        c[i] = ( p[i+1].y() - p[i].y() ) / h[i] 
            - (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; 
    }

    return true;
}

/*!
  \brief Determines the coefficients for a periodic spline
  \return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildPeriodicSpline(
    const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildPeriodicSpline(const QPolygonF &points)
#endif
{
    int i;
    
#if QT_VERSION < 0x040000
    const QwtDoublePoint *p = points.data();
#else
    const QPointF *p = points.data();
#endif
    const int size = points.size();

    double *a = d_data->a.data();
    double *b = d_data->b.data();
    double *c = d_data->c.data();

    QwtArray<double> d(size-1);
    QwtArray<double> h(size-1);
    QwtArray<double> s(size);
    
    //
    //  setup equation system; use coefficient
    //  vectors as temporary buffers
    //
    for (i = 0; i < size - 1; i++)
    {
        h[i] = p[i+1].x() - p[i].x();
        if (h[i] <= 0.0)
            return false;
    }
    
    const int imax = size - 2;
    double htmp = h[imax];
    double dy1 = (p[0].y() - p[imax].y()) / htmp;
    for (i = 0; i <= imax; i++)
    {
        b[i] = c[i] = h[i];
        a[i] = 2.0 * (htmp + h[i]);
        const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
        d[i] = 6.0 * ( dy1 - dy2);
        dy1 = dy2;
        htmp = h[i];
    }

    //
    // solve it
    //
    
    // L-U Factorization
    a[0] = sqrt(a[0]);
    c[0] = h[imax] / a[0];
    double sum = 0;

    for( i = 0; i < imax - 1; i++)
    {
        b[i] /= a[i];
        if (i > 0)
           c[i] = - c[i-1] * b[i-1] / a[i];
        a[i+1] = sqrt( a[i+1] - qwtSqr(b[i]));
        sum += qwtSqr(c[i]);
    }
    b[imax-1] = (b[imax-1] - c[imax-2] * b[imax-2]) / a[imax-1];
    a[imax] = sqrt(a[imax] - qwtSqr(b[imax-1]) - sum);
    

    // forward elimination
    s[0] = d[0] / a[0];
    sum = 0;
    for( i = 1; i < imax; i++)
    {
        s[i] = (d[i] - b[i-1] * s[i-1]) / a[i];
        sum += c[i-1] * s[i-1];
    }
    s[imax] = (d[imax] - b[imax-1] * s[imax-1] - sum) / a[imax];
    
    
    // backward elimination
    s[imax] = - s[imax] / a[imax];
    s[imax-1] = -(s[imax-1] + b[imax-1] * s[imax]) / a[imax-1];
    for (i= imax - 2; i >= 0; i--)
       s[i] = - (s[i] + b[i] * s[i+1] + c[i] * s[imax]) / a[i];

    //
    // Finally, determine the spline coefficients
    //
    s[size-1] = s[0];
    for ( i=0; i < size-1; i++)
    {
        a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
        b[i] = 0.5 * s[i];
        c[i] = ( p[i+1].y() - p[i].y() ) 
            / h[i] - (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0; 
    }

    return true;
}