SelfadjointMatrixVector.h 10.5 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21
namespace internal {

/* Optimized selfadjoint matrix * vector product:
 * This algorithm processes 2 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 2 and to reduce
 * the instruction dependency.
 */
Don Gagne's avatar
Don Gagne committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
struct selfadjoint_matrix_vector_product;

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
struct selfadjoint_matrix_vector_product

{
static EIGEN_DONT_INLINE void run(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res,
  Scalar alpha);
};

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
LM's avatar
LM committed
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res,
  Scalar alpha)
{
  typedef typename packet_traits<Scalar>::type Packet;
  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum {
    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
    IsLower = UpLo == Lower ? 1 : 0,
    FirstTriangular = IsRowMajor == IsLower
  };

  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;

  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;

Don Gagne's avatar
Don Gagne committed
62
  Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
LM's avatar
LM committed
63 64 65 66 67 68 69 70 71 72 73 74

  // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
  // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
  // this is because we need to extract packets
  ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);  
  if (rhsIncr!=1)
  {
    const Scalar* it = _rhs;
    for (Index i=0; i<size; ++i, it+=rhsIncr)
      rhs[i] = *it;
  }

Don Gagne's avatar
Don Gagne committed
75
  Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
LM's avatar
LM committed
76 77 78 79 80 81
  if (FirstTriangular)
    bound = size - bound;

  for (Index j=FirstTriangular ? bound : 0;
       j<(FirstTriangular ? size : bound);j+=2)
  {
dogmaphobic's avatar
dogmaphobic committed
82 83
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
    const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
LM's avatar
LM committed
84 85 86 87 88 89

    Scalar t0 = cjAlpha * rhs[j];
    Packet ptmp0 = pset1<Packet>(t0);
    Scalar t1 = cjAlpha * rhs[j+1];
    Packet ptmp1 = pset1<Packet>(t1);

Don Gagne's avatar
Don Gagne committed
90
    Scalar t2(0);
LM's avatar
LM committed
91
    Packet ptmp2 = pset1<Packet>(t2);
Don Gagne's avatar
Don Gagne committed
92
    Scalar t3(0);
LM's avatar
LM committed
93 94 95 96
    Packet ptmp3 = pset1<Packet>(t3);

    size_t starti = FirstTriangular ? 0 : j+2;
    size_t endi   = FirstTriangular ? j : size;
Don Gagne's avatar
Don Gagne committed
97
    size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
LM's avatar
LM committed
98 99 100
    size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);

    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
Don Gagne's avatar
Don Gagne committed
101 102
    res[j]   += cjd.pmul(numext::real(A0[j]), t0);
    res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
LM's avatar
LM committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if(FirstTriangular)
    {
      res[j]   += cj0.pmul(A1[j],   t1);
      t3       += cj1.pmul(A1[j],   rhs[j]);
    }
    else
    {
      res[j+1] += cj0.pmul(A0[j+1],t0);
      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
    }

    for (size_t i=starti; i<alignedStart; ++i)
    {
      res[i] += t0 * A0[i] + t1 * A1[i];
Don Gagne's avatar
Don Gagne committed
117 118
      t2 += numext::conj(A0[i]) * rhs[i];
      t3 += numext::conj(A1[i]) * rhs[i];
LM's avatar
LM committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    }
    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
    // gcc 4.2 does this optimization automatically.
    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
    for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
    {
      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
      Packet Xi  = pload <Packet>(resIt);

      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
      pstore(resIt,Xi); resIt += PacketSize;
    }
    for (size_t i=alignedEnd; i<endi; i++)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }

    res[j]   += alpha * (t2 + predux(ptmp2));
    res[j+1] += alpha * (t3 + predux(ptmp3));
  }
  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
  {
dogmaphobic's avatar
dogmaphobic committed
150
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
LM's avatar
LM committed
151 152

    Scalar t1 = cjAlpha * rhs[j];
Don Gagne's avatar
Don Gagne committed
153
    Scalar t2(0);
LM's avatar
LM committed
154
    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
Don Gagne's avatar
Don Gagne committed
155
    res[j] += cjd.pmul(numext::real(A0[j]), t1);
LM's avatar
LM committed
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
    {
      res[i] += cj0.pmul(A0[i], t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
    }
    res[j] += alpha * t2;
  }
}

} // end namespace internal 

/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/

namespace internal {
template<typename Lhs, int LhsMode, typename Rhs>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
{};
}

template<typename Lhs, int LhsMode, typename Rhs>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    LhsUpLo = LhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

Don Gagne's avatar
Don Gagne committed
190
  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
LM's avatar
LM committed
191 192 193 194 195 196 197
  {
    typedef typename Dest::Scalar ResScalar;
    typedef typename Base::RhsScalar RhsScalar;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
    
    eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());

Don Gagne's avatar
Don Gagne committed
198 199
    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
LM's avatar
LM committed
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    enum {
      EvalToDest = (Dest::InnerStrideAtCompileTime==1),
      UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
    };
    
    internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
    internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  EvalToDest ? dest.data() : static_dest.data());
                                                  
    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
        UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
    
    if(!EvalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      MappedDest(actualDestPtr, dest.size()) = dest;
    }
      
    if(!UseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = rhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
    }
      
      
Don Gagne's avatar
Don Gagne committed
237
    internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
LM's avatar
LM committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      (
        lhs.rows(),                             // size
        &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
        actualRhsPtr, 1,                        // rhs info
        actualDestPtr,                          // result info
        actualAlpha                             // scale factor
      );
    
    if(!EvalToDest)
      dest = MappedDest(actualDestPtr, dest.size());
  }
};

namespace internal {
template<typename Lhs, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}

template<typename Lhs, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
  : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    RhsUpLo = RhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

Don Gagne's avatar
Don Gagne committed
270
  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
LM's avatar
LM committed
271 272 273 274 275 276 277 278
  {
    // let's simply transpose the product
    Transpose<Dest> destT(dest);
    SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
                             Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
  }
};

Don Gagne's avatar
Don Gagne committed
279
} // end namespace Eigen
LM's avatar
LM committed
280 281

#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H